Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy

Interferometer developed at Moscow State University.
CREDIT
Elizaveta Melik-Gaikazyan
Interferometer developed at Moscow State University. CREDIT Elizaveta Melik-Gaikazyan

Abstract:
An international research group together with scientists from the MSU have developed a time-resolved spectroscopy method that allows studying fast processes in samples. The new method works by analyzing quantized light transmitted through a sample, without the use of femtosecond lasers and complex detection systems. This design is much cheaper than the one used currently and, moreover, allows you to study a sample without destroying it. The research has been published in the Scientific Reports journal.

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy

Moscow, Russia | Posted on November 21st, 2017

One of the most common ways of investigating interactions and processes occurring in a substance is based on measuring the time in which a sample responds to external electromagnetic fields affecting it. According to this temporal response, it is possible to judge which connections exist between the components of the substance. As these times are often measured by femtoseconds (10-15 sec), in such experiments it is customary to use femtosecond lasers capable of generating ultrashort pulses.

The problem is that, firstly, femtosecond lasers have high power, and therefore can damage the object under investigation, and secondly, these lasers are expensive. To solve this problem, the researchers have developed a scheme that allows studying samples with single photons and using ordinary lasers for producing them.

The setup consists of the simplest interferometer that makes it possible to accurately measure the interference of light. In the assembled circuit, a nonlinear crystal is located on the laser path. In it, pairs of entangled photons are created and fly off at a certain angle. The phenomenon of quantum entanglement arises in two or more particles, which can be separated by arbitrarily long distances, but continue to "feel" each other, meaning that an attempt to measure the parameters of one particle leads to an instant determination of the state of the other.

"Thanks to this design, we can measure femtosecond times without a femtosecond laser, using single photons," explained the co-author of the article, a graduate student at the Faculty of Physics of Lomonosov Moscow State University, Elizaveta Melik-Gaykazyan.

The test sample is set inside one arm of the interferometer. One photon of the pair passes through it and hit the beam splitter, where it meetsits counterpart that has passed through the second arm. After that, the photons fall on one of two detectors, which react to single photons. That makes it possible to construct a coincidence circuit: if both photons go to the same detector, it is zero coincidence; if they go to different detectors, it is one. At the moment when the delay between the two arms becomes absolutely identical, the effect of quantum interference occurs - coincidence completely disappears, since photons never fall on both detectors simultaneously.

If the sample is set into the photons' path, pattern of the quantum interference starts to change. In this case, the pairs of entangled photons that come to the splitter become less "identical" than in a situation without a sample. Because of this, the photon reception statistics on the two detectors changes, and from the change in this statistics one can judge the nature of the interactions in the substance under study, for example, estimate the transition time from the excited state to the unexcited state.

For her work, Melik-Gaikazyan received support in the framework of the SIPGA scholarship program, established by the Agency for Science, Technology and Research (Republic of Singapore). She has built an experimental setup, measured the interference pattern with and without the test sample, obtained experimental data and analyzed it.

The researchers have tested and verified the developed method on two samples: a Nd:YAG crystal (an aluminum-yttrium garnet with neodymium) and a matrix of dielectric nanoparticles.

"The new method of analyzing unknown substances can be used in chemistry, biology, and materials science," Melik-Gaykazyan said. "In addition, it can be useful when creating a quantum computer, and when trying to understand how to use quantum light in information technology."

####

For more information, please click here

Contacts:
Yana Khlyustova

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Possible Futures

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Chip Technology

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Quantum Computing

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Optical computing/Photonic computing

New record: 3D-printed optical-electronic integration June 18th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Discoveries

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Photonics/Optics/Lasers

New record: 3D-printed optical-electronic integration June 18th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Quantum nanoscience

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project