Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy

Interferometer developed at Moscow State University.
CREDIT
Elizaveta Melik-Gaikazyan
Interferometer developed at Moscow State University. CREDIT Elizaveta Melik-Gaikazyan

Abstract:
An international research group together with scientists from the MSU have developed a time-resolved spectroscopy method that allows studying fast processes in samples. The new method works by analyzing quantized light transmitted through a sample, without the use of femtosecond lasers and complex detection systems. This design is much cheaper than the one used currently and, moreover, allows you to study a sample without destroying it. The research has been published in the Scientific Reports journal.

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy

Moscow, Russia | Posted on November 21st, 2017

One of the most common ways of investigating interactions and processes occurring in a substance is based on measuring the time in which a sample responds to external electromagnetic fields affecting it. According to this temporal response, it is possible to judge which connections exist between the components of the substance. As these times are often measured by femtoseconds (10-15 sec), in such experiments it is customary to use femtosecond lasers capable of generating ultrashort pulses.

The problem is that, firstly, femtosecond lasers have high power, and therefore can damage the object under investigation, and secondly, these lasers are expensive. To solve this problem, the researchers have developed a scheme that allows studying samples with single photons and using ordinary lasers for producing them.

The setup consists of the simplest interferometer that makes it possible to accurately measure the interference of light. In the assembled circuit, a nonlinear crystal is located on the laser path. In it, pairs of entangled photons are created and fly off at a certain angle. The phenomenon of quantum entanglement arises in two or more particles, which can be separated by arbitrarily long distances, but continue to "feel" each other, meaning that an attempt to measure the parameters of one particle leads to an instant determination of the state of the other.

"Thanks to this design, we can measure femtosecond times without a femtosecond laser, using single photons," explained the co-author of the article, a graduate student at the Faculty of Physics of Lomonosov Moscow State University, Elizaveta Melik-Gaykazyan.

The test sample is set inside one arm of the interferometer. One photon of the pair passes through it and hit the beam splitter, where it meetsits counterpart that has passed through the second arm. After that, the photons fall on one of two detectors, which react to single photons. That makes it possible to construct a coincidence circuit: if both photons go to the same detector, it is zero coincidence; if they go to different detectors, it is one. At the moment when the delay between the two arms becomes absolutely identical, the effect of quantum interference occurs - coincidence completely disappears, since photons never fall on both detectors simultaneously.

If the sample is set into the photons' path, pattern of the quantum interference starts to change. In this case, the pairs of entangled photons that come to the splitter become less "identical" than in a situation without a sample. Because of this, the photon reception statistics on the two detectors changes, and from the change in this statistics one can judge the nature of the interactions in the substance under study, for example, estimate the transition time from the excited state to the unexcited state.

For her work, Melik-Gaikazyan received support in the framework of the SIPGA scholarship program, established by the Agency for Science, Technology and Research (Republic of Singapore). She has built an experimental setup, measured the interference pattern with and without the test sample, obtained experimental data and analyzed it.

The researchers have tested and verified the developed method on two samples: a Nd:YAG crystal (an aluminum-yttrium garnet with neodymium) and a matrix of dielectric nanoparticles.

"The new method of analyzing unknown substances can be used in chemistry, biology, and materials science," Melik-Gaykazyan said. "In addition, it can be useful when creating a quantum computer, and when trying to understand how to use quantum light in information technology."

####

For more information, please click here

Contacts:
Yana Khlyustova

Copyright © Lomonosov Moscow State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Possible Futures

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Chip Technology

Nanometrics to Announce Third Quarter Financial Results on October 30, 2018 October 10th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Machine learning helps improving photonic applications September 28th, 2018

Quantum Computing

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Optical computing/Photonic computing

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

Machine learning helps improving photonic applications September 28th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Discoveries

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Announcements

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Photonics/Optics/Lasers

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

AIM Photonics is Unveiling Support for Datacom and Telecom Optical Bands with its New Silicon Photonics Process Design Kit (PDK): New Analog Photonics and SUNY PDK Enables Partnering Companies to Gain World-Class Technological Capabilities in O+C+L optical bands October 5th, 2018

Light makes Rice U. catalyst more effective: Halas lab details plasmonic effect that allows catalyst to work at lower energy October 5th, 2018

Quantum nanoscience

Quantum mechanics work lets oil industry know promise of recovery experiments September 28th, 2018

September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project