Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles with pulse laser controlled antibacterial properties

When gold-coated silver nanoplates are irradiated with a pulsed laser, they change shape into a sphere and release silver ions which produces a strong antibacterial effect.
CREDIT
Dr. Takuro Niidome
When gold-coated silver nanoplates are irradiated with a pulsed laser, they change shape into a sphere and release silver ions which produces a strong antibacterial effect. CREDIT Dr. Takuro Niidome

Abstract:
Silver nanoparticles (AgNPs) are known to have excellent antibacterial properties and are considered by many to be a strong contender in the critical search for an answer to antibiotic-resistant bacteria. They block enzymes and can cause bacteria to have irregularly shaped membranes, producing results ranging from inhibited growth to cell death. However, a collaboration of researchers from Kumamoto University, Keio University, and Dai Nippon Toryo Co., Ltd. in Japan found that AgNPs have a propensity to conglomerate, which results in a reduction of antibacterial attributes. They solved the conglomeration problem by coating the nanoparticles with gold. Unfortunately, this also caused a reduction of the antibacterial effects since the silver was no longer exposed. This prompted the researchers to search for a method to keep the shape of the nanoparticles as well as the antibacterial properties.

Nanoparticles with pulse laser controlled antibacterial properties

Kumamoto, Japan | Posted on October 26th, 2017

Pulsed laser irradiation on the gold-coated silver nanoparticles NPs) provided a solution to the problem. When NPs are irradiated with a pulse laser, the morphology of the NPs changes from a triangular plate to a spherical shape. This is due to the metals melting from the heat of the laser pulse. The researchers showed that NPs were about half triangular and half spherical before irradiation but jumped to 94% spherical after irradiation. Furthermore, the silver-to-gold ratio of the pre-irradiation NPs was around 22:1, but the post-irradiation ratio was near 4.5:1. This was interpreted by the researchers as the generation of defects in the gold-coating which allowed for some of the silver to escape as ions. This is an important aspect of the pulsed laser irradiation process since the release of silver produces the bactericidal effect.

"We have developed a method to activate the antibacterial properties of silver nanoparticles at will," said Professor Takuro Niidome, leader of the research group. "Our experiments have shown that, while non-irradiated gold-coated silver nanoparticles have only minor antibacterial properties, the effects are significantly increased after pulsed laser irradiation. We hope to develop this technology further as a method of managing bacteria that have developed antibacterial resistance."

The irradiated NPs were highly effective against Escherichia coli, resulting in a 0% colony survival rate. Silver NPs alone were similarly effective, but the NPs had the advantages of being activated as needed and did not tend to clump together like the silver NPs.

This research was posted online in the Royal Society of Chemistry journal Nanoscale on 11 October 2017.

####

For more information, please click here

Contacts:
J. Sanderson

Copyright © Kumamoto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

[Reference]

Related News Press

News and information

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

Possible Futures

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Nanomedicine

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Discoveries

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Nanobiotechnology

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Scientists synthesize nanoparticle-antioxidants to treat strokes and spinal cord injuries January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Photonics/Optics/Lasers

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Ocean Optics Grows Sales Organization with Executive Appointments: Henry Langston promoted, Christine Stannard joins spectral sensing product developer December 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project