Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers greenlight gas detection at room temperature

This is a slider.
CREDIT
MIPT Press Office
This is a slider. CREDIT MIPT Press Office

Abstract:
Russian researchers have developed a mechanism for detecting molecular hydrogen using green light to illuminate a nanocrystalline composite sensor based on zinc and indium oxides. For the first time, this enables a gas sensor operating at room temperature. The paper was published in the journal Scientific Reports.

Researchers greenlight gas detection at room temperature

Moscow, Russia | Posted on October 26th, 2017

Multisensor arrays for determining gas mixture composition are currently being developed. These are monitoring systems incorporating multiple sensors that target individual gases. Such sensors can be used to analyze air quality both outdoors and in closed spaces. Tracking atmospheric pollution remains a vital concern for many developed countries. Because residential communities tend to cluster around industrial areas, it is necessary to have a mechanism in place for controlling harmful emissions from plants and factories.

Besides that, air composition measurements are required at nuclear power plants, on submarines and space stations, and at other facilities where access to fresh air is not immediately available: If the concentration of carbon dioxide increases or a toxic substance leaks into the ventilation system, this might put the lives of personnel at risk.

Commercial gas mixtures such as gas fuels also need precise composition monitoring. Among them is hydrogen. Used as gas fuel, it could conceivably replace hydrocarbons. It is a clean fuel that releases nothing but water vapor when burnt. In addition, the efficiency of burning hydrogen is 10 to 20 percent higher than that of hydrocarbons. Some car manufacturers have already started phasing in hydrogen seeing it as a fuel of the future. And yet the Hindenburg airship disaster is a sad reminder of how dangerous hydrogen can be.

Until recently, gas sensors based on nanocrystalline metal oxides had operating temperatures between 300 and 500 degrees Celsius. This made them unsafe for the detection of explosive or combustible substances. Moreover, to maintain these high temperatures, a lot of power is required, making it impossible to embed such gas sensors into the circuit boards of portable devices.

To solve this problem, Professor Leonid Trakhtenberg of MIPT; Pavel Kashkarov, director of the Institute of Nano-, Bio-, Information, Cognitive and Socio-Humanistic Science and Technology; Alexander Ilin and Pavel Forsh from Lomonosov Moscow State University; and their colleagues from Semenov Institute of Chemical Physics proposed sensors capable of operating at room temperature. Their new nanocomposite sensors are based on zinc and indium oxides, and their efficiency is maximized by green light illumination. The proposed device could be used to detect combustible, explosive, or poisonous substances in the atmosphere even at low concentrations.

"The mechanism consists in the light-induced transition of the nanocrystalline sensor components into a nonequilibrium state and the resulting change in the photoconductivity of the sensor interacting with molecular hydrogen. This effect is linked with the dependence of photoconductivity on the nonequilibrium charge carrier recombination rate," explains Maria Ikim, a doctoral student at the Laboratory of Functional Nanocomposites of Semenov Institute of Chemical Physics of the Russian Academy of Sciences.

"The detectors that we have developed differ from the conventional semiconductor sensors in that they operate at room temperature. This eliminates the danger of combustion or explosion, when flammable or explosive substances are involved," says Leonid Trakhtenberg of the Department of Chemical Physics, MIPT, who holds an ScD in physics and mathematics. "Most papers on sensor photoactivation discuss the effects of ultraviolet light on sensors and focus on the detection of oxidizing gases. But the efficiency of ultraviolet light diodes is low, while their cost is far greater than that of their counterparts emitting in the visible part of the spectrum. By working with hydrogen, we explore the possibilities of the detection of reducing gases."

The paper reported in this story proposes a novel mechanism of sensor response photoactivation, which is illustrated by the image above. It accounts for the transition of charge carriers into a nonequilibrium state. The process involved is universal: It can be used to interpret sensing results in both oxidizing and reducing gases.

The sensors proposed by the authors could be used to monitor atmospheric air composition and analyze the chemical makeup of gases used in industrial processes. Although the study focuses on gases, the same sensors could be modified to target liquids.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

7-977-771-4699

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Chemistry

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Possible Futures

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sensors

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Announcements

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Environment

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Industrial

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Researchers present new strategy for extending ductility in a single-phase alloy June 28th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project