Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers greenlight gas detection at room temperature

This is a slider.
CREDIT
MIPT Press Office
This is a slider. CREDIT MIPT Press Office

Abstract:
Russian researchers have developed a mechanism for detecting molecular hydrogen using green light to illuminate a nanocrystalline composite sensor based on zinc and indium oxides. For the first time, this enables a gas sensor operating at room temperature. The paper was published in the journal Scientific Reports.

Researchers greenlight gas detection at room temperature

Moscow, Russia | Posted on October 26th, 2017

Multisensor arrays for determining gas mixture composition are currently being developed. These are monitoring systems incorporating multiple sensors that target individual gases. Such sensors can be used to analyze air quality both outdoors and in closed spaces. Tracking atmospheric pollution remains a vital concern for many developed countries. Because residential communities tend to cluster around industrial areas, it is necessary to have a mechanism in place for controlling harmful emissions from plants and factories.

Besides that, air composition measurements are required at nuclear power plants, on submarines and space stations, and at other facilities where access to fresh air is not immediately available: If the concentration of carbon dioxide increases or a toxic substance leaks into the ventilation system, this might put the lives of personnel at risk.

Commercial gas mixtures such as gas fuels also need precise composition monitoring. Among them is hydrogen. Used as gas fuel, it could conceivably replace hydrocarbons. It is a clean fuel that releases nothing but water vapor when burnt. In addition, the efficiency of burning hydrogen is 10 to 20 percent higher than that of hydrocarbons. Some car manufacturers have already started phasing in hydrogen seeing it as a fuel of the future. And yet the Hindenburg airship disaster is a sad reminder of how dangerous hydrogen can be.

Until recently, gas sensors based on nanocrystalline metal oxides had operating temperatures between 300 and 500 degrees Celsius. This made them unsafe for the detection of explosive or combustible substances. Moreover, to maintain these high temperatures, a lot of power is required, making it impossible to embed such gas sensors into the circuit boards of portable devices.

To solve this problem, Professor Leonid Trakhtenberg of MIPT; Pavel Kashkarov, director of the Institute of Nano-, Bio-, Information, Cognitive and Socio-Humanistic Science and Technology; Alexander Ilin and Pavel Forsh from Lomonosov Moscow State University; and their colleagues from Semenov Institute of Chemical Physics proposed sensors capable of operating at room temperature. Their new nanocomposite sensors are based on zinc and indium oxides, and their efficiency is maximized by green light illumination. The proposed device could be used to detect combustible, explosive, or poisonous substances in the atmosphere even at low concentrations.

"The mechanism consists in the light-induced transition of the nanocrystalline sensor components into a nonequilibrium state and the resulting change in the photoconductivity of the sensor interacting with molecular hydrogen. This effect is linked with the dependence of photoconductivity on the nonequilibrium charge carrier recombination rate," explains Maria Ikim, a doctoral student at the Laboratory of Functional Nanocomposites of Semenov Institute of Chemical Physics of the Russian Academy of Sciences.

"The detectors that we have developed differ from the conventional semiconductor sensors in that they operate at room temperature. This eliminates the danger of combustion or explosion, when flammable or explosive substances are involved," says Leonid Trakhtenberg of the Department of Chemical Physics, MIPT, who holds an ScD in physics and mathematics. "Most papers on sensor photoactivation discuss the effects of ultraviolet light on sensors and focus on the detection of oxidizing gases. But the efficiency of ultraviolet light diodes is low, while their cost is far greater than that of their counterparts emitting in the visible part of the spectrum. By working with hydrogen, we explore the possibilities of the detection of reducing gases."

The paper reported in this story proposes a novel mechanism of sensor response photoactivation, which is illustrated by the image above. It accounts for the transition of charge carriers into a nonequilibrium state. The process involved is universal: It can be used to interpret sensing results in both oxidizing and reducing gases.

The sensors proposed by the authors could be used to monitor atmospheric air composition and analyze the chemical makeup of gases used in industrial processes. Although the study focuses on gases, the same sensors could be modified to target liquids.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

7-977-771-4699

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project