Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices

The blue and red cones show the energy and momentum of surface electrons in a 3D topological insulator. The spin structure is shown in the blue and red arrows at the top and bottom, respectively. Light promotes electrons from the blue cone into the red cone, with the spin direction flipping. The orderly spinning leads to the chiral spin mode observed in this study.
Hsiang-Hsi (Sean) Kung/Rutgers University-New Brunswick
The blue and red cones show the energy and momentum of surface electrons in a 3D topological insulator. The spin structure is shown in the blue and red arrows at the top and bottom, respectively. Light promotes electrons from the blue cone into the red cone, with the spin direction flipping. The orderly spinning leads to the chiral spin mode observed in this study. Hsiang-Hsi (Sean) Kung/Rutgers University-New Brunswick

Abstract:
Picture two schools of fish swimming in clockwise and counterclockwise circles. It’s enough to make your head spin, and now scientists at Rutgers University-New Brunswick and the University of Florida have discovered the “chiral spin mode” – a sea of electrons spinning in opposing circles.

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices

New Brunswick, NJ | Posted on October 2nd, 2017

“We discovered a new collective spin mode that can be used to transport energy or information with very little energy dissipation, and it can be a platform for building novel electronic devices such as computers and processors,” said Girsh Blumberg, senior author of the study and a professor in the Department of Physics and Astronomy in Rutgers’ School of Arts and Sciences.

Collective chiral spin modes are propagating waves of electron spins that do not carry a charge current but modify the “spinning” directions of electrons. “Chiral” refers to entities, like your right and left hands, that are matching but asymmetrical and can’t be superimposed on their mirror image.

The study, led by Hsiang-Hsi (Sean) Kung, a graduate student in Blumberg’s Rutgers Laser Spectroscopy Lab, was published in Physical Review Letters. Kung used a custom-made, ultra-sensitive spectrometer to study a prototypical 3D topological insulator. A microscopic theoretical model that predicts the energy and temperature evolution of the chiral spin mode was developed by Saurabh Maiti and Professor Dmitrii Maslov at the University of Florida, strongly substantiating the experimental observation.

In a vacuum, electrons are simple, boring elementary particles. But in solids, the collective behavior of many electrons interacting with each other and the underlying platform may result in phenomena that lead to new applications in superconductivity, magnetism and piezoelectricity (voltage generated via materials placed under pressure), to name a few. Condensed matter science, which focuses on solids, liquids and other concentrated forms of matter, seeks to reveal new phenomena in new materials.

Silicon-based electronics, such as computer chips and computers, are one of the most important inventions in human history. But silicon leads to significant energy loss when scaled down. One alternative is to harness the spins of electrons to transport information through extremely thin wires, which in theory would slash energy loss.

The newly discovered “chiral spin mode” stems from the sea of electrons on the surface of “3D topological insulators.” These special insulators have nonmagnetic, insulating material with robust metallic surfaces, and the electrons are confined so they move only on 2D surfaces.

Most importantly, the electrons’ spinning axes are level and perpendicular to their velocity. Chiral spin modes emerge naturally from the surface of such insulating materials, but they were never observed before due to crystalline defects. The experimental observation in the current study was made possible following the development of ultra-clean crystals by Rutgers doctoral student Xueyun Wang and Board of Governors Professor Sang-Wook Cheong in the Rutgers Center for Emergent Materials.

The discovery paves new paths for building next generation low-loss electronic devices. The research at Rutgers was funded by the National Science Foundation.

####

For more information, please click here

Contacts:
Todd B. Bates
Science Communicator, Public and Media Relations
Rutgers University-New Brunswick
101 Somerset Street
New Brunswick, NJ 08901-1281
O: 848-932-0550 | C: 908-208-3422 | F: 732-932-8412

http://newbrunswick.rutgers.edu/

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Hardware

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Possible Futures

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Chip Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Discoveries

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Announcements

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project