Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium

Rice University materials scientists replace all the atoms on top of a three-layer, two-dimensional crystal to make a transition-metal dichalcogenide with sulfur, molybdenum and selenium.
CREDIT
Jing Zhang/Rice University
Rice University materials scientists replace all the atoms on top of a three-layer, two-dimensional crystal to make a transition-metal dichalcogenide with sulfur, molybdenum and selenium. CREDIT Jing Zhang/Rice University

Abstract:
Like a sandwich with wheat on the bottom and rye on the top, Rice University scientists have cooked up a tasty new twist on two-dimensional materials.

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium

Houston, TX | Posted on August 14th, 2017

The Rice laboratory of materials scientist Jun Lou has made a semiconducting transition-metal dichalcogenide (TMD) that starts as a monolayer of molybdenum diselenide. They then strip the top layer of the lattice and replace precisely half the selenium atoms with sulfur.

The new material they call Janus sulfur molybdenum selenium (SMoSe) has a crystalline construction the researchers said can host an intrinsic electric field and that also shows promise for catalytic production of hydrogen.

The work is detailed this month in the American Chemical Society journal ACS Nano.

The two-faced material is technically two-dimensional, but like molybdenum diselenide it consists of three stacked layers of atoms arranged in a grid. From the top, they look like hexagonal rings a la graphene, but from any other angle, the grid is more like a nanoscale jungle gym.

Tight control of the conditions in a typical chemical vapor deposition furnace -- 800 degrees Celsius (1,872 degrees Fahrenheit) at atmospheric pressure -- allowed the sulfur to interact with only the top layer of selenium atoms and leave the bottom untouched, the researchers said. If the temperature drifts above 850, all the selenium is replaced.

"Like the intercalation of many other molecules demonstrated to have the ability to diffuse into the layered materials, diffusion of gaseous sulfur molecules in between the layers of these Van der Waals crystals, as well as the space between them and the substrates, requires sufficient driving force," said Rice postdoctoral researcher Jing Zhang, co-lead author of the paper with graduate student Shuai Jia. "And the driving force in our experiments is controlled by the reaction temperature."

Close examination showed the presence of sulfur gave the material a larger band gap than molybdenum diselenide, the researchers said.

"This type of two-faced structure has long been predicted theoretically but very rarely realized in the 2-D research community," Lou said. "The break of symmetry in the out-of-plane direction of 2-D TMDs could lead to many applications, such as a basal-plane active 2-D catalyst, robust piezoelectricity-enabled sensors and actuators at the 2-D limit."

He said preparation of the Janus material should be universal to layered materials with similar structures. "It will be quite interesting to look at the properties of the Janus configuration of other 2-D materials," Lou said.

###

Co-authors of the paper are graduate students Weibing Chen and Zehua Jin and postdoctoral researcher Hua Guo of Rice; research scientist Iskandar Kholmanov and professor Li Shi, the Myron L. Begeman Fellow in Engineering at the University of Texas at Austin; and graduate students Liang Dong and Dequan Er and Vivek Shenoy, a professor of materials science and engineering, of mechanical engineering and applied mechanics and of bioengineering at the University of Pennsylvania. Lou is a professor of materials science and nanoengineering.

The Air Force Office of Scientific Research, the Welch Foundation, the Army Research Office and the National Science Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jeff Falk

713-348-6775

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

2 Dimensional Materials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Wrinkles give heat a jolt in pillared graphene : Rice University researchers test 3-D carbon nanostructures' thermal transport abilities November 2nd, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Possible Futures

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Automotive/Transportation

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

GLOBALFOUNDRIES Introduces New Automotive Platform to Fuel Tomorrow’s Connected Car: AutoPro™ provides a full range of technologies and manufacturing services to help carmakers harness the power of silicon for a new era of ‘connected intelligence’ October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Research partnerships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project