Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water

Figure.  Schematic of solar fuel production by semiconductor photocatalyst
Researchers observed robust binding between the ruthenium metal complex and carbon nitride nanosheets under visible light in aqueous solution
© Angew. Chem.
Figure. Schematic of solar fuel production by semiconductor photocatalyst Researchers observed robust binding between the ruthenium metal complex and carbon nitride nanosheets under visible light in aqueous solution © Angew. Chem.

Abstract:
The research group at Tokyo Institute of Technology has found a hybrid photocatalyst exhibits specifically high activity for the reductive conversion reaction of carbon dioxide (CO2) to formic acid under visible light irradiation.

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water

Tokyo, Japan | Posted on June 15th, 2017

With the on-going depletion of fossil fuels, the rise in greenhouse gases, the issue of how to make clean, safe and affordable energy remains a critical concern.

Following seminal work by Nobel laureate Jean-Marie Lehn and others in the 1980s, photocatalysts — materials that convert light to energy — have been increasingly explored as an efficient way of breaking down carbon dioxide (CO2) into useful, high-energy molecules. Compared with conventional approaches such as thermal catalysis, for example, photocatalysts have the advantage of not requiring costly procedures such as high temperatures and pressures.

Now, a research team led by Kazuhiko Maeda at Tokyo Tech has developed a new nanomaterial capable of reducing CO2 with a selectivitya of 99% and a turnoverb number of more than 2000, outperforming existing methods.

These results are the highest recorded under visible light and in water, bringing Maeda's team a step closer to the goal of artificial photosynthesis — the design of systems that replicate the natural process of using sunlight, water and CO2 for sustainable energy production.

The new material, reported in Angewandte Chemie, consists of high-surface-area carbon nitride nanosheets combined with a metal structure known as a binuclear ruthenium(II) complex (RuRu'). Although different kinds of metal complexes are known to promote CO2 reduction, Maeda says that RuRu' is currently “the best-performing one” but needs to be replaced with precious metal-free counterparts in the future.

What makes the material unique is the extent to which the RuRu' binds to the nanosheet surface. Strong binding improves electron transfer, which in turn improves CO2 reduction. In the study, up to 70% of the RuRu' was found to be attached to the nanosheets — an unprecedented figure, Maeda explains, given that the carbon nitride surface is thought to be chemically inert. “This has been a big surprise in our research community,” he says.

Also, to optimise performance, Maeda’s team modified the nanosheets with silver, which plays an important role in improving electron capture and transfer efficiency.

The research opens up new possibilities for carbon nitride-based photocatalysts, as they work not only in water but also various organic solvents, which can be transformed into value-added chemicals such as aldehydes in the chemical industry.

“Until very recently, it seemed impossible to achieve CO2 reduction under visible light in aqueous solution with high efficiency,” says Maeda. “Our new result clearly demonstrates that this is indeed possible, even using a low-cost carbon nitride-based material.”

One of the next challenges for Maeda’s team is to design photocatalysts consisting of earth-abundant metals such as iron and copper in place of the rare metal ruthenium.

Technical terms:
a. Selectivity: The ratio of a desired product to the total products in a given catalytic reaction

b. Turnover: The total number of photochemical transformations during a catalytic cycle


Reference:
R. Kuriki1, M. Yamamoto2, K. Higuchi3, Y. Yamamoto3, M. Akatsuka3, D. Lu4, S. Yagi3, T. Yoshida2, O. Ishitani1, K. Maeda1* , Angew. Chem. Int. Ed. 2017, 56, 4867.
DOI: 10.1002/anie.201701627

1 Department of Chemistry, School of Science, Tokyo Institute of Technology
2 Advanced Research Institute for Natural Science and Technology, Osaka City University
3 Institute of Materials and Systems for Sustainability, Nagoya University
4 Materials Analysis Division, Technical Department, Tokyo Institute of Technology

####

About Tokyo Institute of Technology
Tokyo Institute of Technology stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in a variety of fields, such as material science, biology, computer science and physics. Founded in 1881, Tokyo Tech has grown to host 10,000 undergraduate and graduate students who become principled leaders of their fields and some of the most sought-after scientists and engineers at top companies. Embodying the Japanese philosophy of “monotsukuri,” meaning technical ingenuity and innovation, the Tokyo Tech community strives to make significant contributions to society through high-impact research.

For more information, please click here

Contacts:
Emiko Kawaguchi
Public Relations Section,
Tokyo Institute of Technology

+81-3-5734-2975

*Corresponding authors email:

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Chemistry

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation June 5th, 2018

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more May 31st, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Possible Futures

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Energy

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

Photonics/Optics/Lasers

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project