Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water

Figure.  Schematic of solar fuel production by semiconductor photocatalyst
Researchers observed robust binding between the ruthenium metal complex and carbon nitride nanosheets under visible light in aqueous solution
© Angew. Chem.
Figure. Schematic of solar fuel production by semiconductor photocatalyst Researchers observed robust binding between the ruthenium metal complex and carbon nitride nanosheets under visible light in aqueous solution © Angew. Chem.

Abstract:
The research group at Tokyo Institute of Technology has found a hybrid photocatalyst exhibits specifically high activity for the reductive conversion reaction of carbon dioxide (CO2) to formic acid under visible light irradiation.

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water

Tokyo, Japan | Posted on June 15th, 2017

With the on-going depletion of fossil fuels, the rise in greenhouse gases, the issue of how to make clean, safe and affordable energy remains a critical concern.

Following seminal work by Nobel laureate Jean-Marie Lehn and others in the 1980s, photocatalysts — materials that convert light to energy — have been increasingly explored as an efficient way of breaking down carbon dioxide (CO2) into useful, high-energy molecules. Compared with conventional approaches such as thermal catalysis, for example, photocatalysts have the advantage of not requiring costly procedures such as high temperatures and pressures.

Now, a research team led by Kazuhiko Maeda at Tokyo Tech has developed a new nanomaterial capable of reducing CO2 with a selectivitya of 99% and a turnoverb number of more than 2000, outperforming existing methods.

These results are the highest recorded under visible light and in water, bringing Maeda's team a step closer to the goal of artificial photosynthesis — the design of systems that replicate the natural process of using sunlight, water and CO2 for sustainable energy production.

The new material, reported in Angewandte Chemie, consists of high-surface-area carbon nitride nanosheets combined with a metal structure known as a binuclear ruthenium(II) complex (RuRu'). Although different kinds of metal complexes are known to promote CO2 reduction, Maeda says that RuRu' is currently “the best-performing one” but needs to be replaced with precious metal-free counterparts in the future.

What makes the material unique is the extent to which the RuRu' binds to the nanosheet surface. Strong binding improves electron transfer, which in turn improves CO2 reduction. In the study, up to 70% of the RuRu' was found to be attached to the nanosheets — an unprecedented figure, Maeda explains, given that the carbon nitride surface is thought to be chemically inert. “This has been a big surprise in our research community,” he says.

Also, to optimise performance, Maeda’s team modified the nanosheets with silver, which plays an important role in improving electron capture and transfer efficiency.

The research opens up new possibilities for carbon nitride-based photocatalysts, as they work not only in water but also various organic solvents, which can be transformed into value-added chemicals such as aldehydes in the chemical industry.

“Until very recently, it seemed impossible to achieve CO2 reduction under visible light in aqueous solution with high efficiency,” says Maeda. “Our new result clearly demonstrates that this is indeed possible, even using a low-cost carbon nitride-based material.”

One of the next challenges for Maeda’s team is to design photocatalysts consisting of earth-abundant metals such as iron and copper in place of the rare metal ruthenium.

Technical terms:
a. Selectivity: The ratio of a desired product to the total products in a given catalytic reaction

b. Turnover: The total number of photochemical transformations during a catalytic cycle


Reference:
R. Kuriki1, M. Yamamoto2, K. Higuchi3, Y. Yamamoto3, M. Akatsuka3, D. Lu4, S. Yagi3, T. Yoshida2, O. Ishitani1, K. Maeda1* , Angew. Chem. Int. Ed. 2017, 56, 4867.
DOI: 10.1002/anie.201701627

1 Department of Chemistry, School of Science, Tokyo Institute of Technology
2 Advanced Research Institute for Natural Science and Technology, Osaka City University
3 Institute of Materials and Systems for Sustainability, Nagoya University
4 Materials Analysis Division, Technical Department, Tokyo Institute of Technology

####

About Tokyo Institute of Technology
Tokyo Institute of Technology stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in a variety of fields, such as material science, biology, computer science and physics. Founded in 1881, Tokyo Tech has grown to host 10,000 undergraduate and graduate students who become principled leaders of their fields and some of the most sought-after scientists and engineers at top companies. Embodying the Japanese philosophy of “monotsukuri,” meaning technical ingenuity and innovation, the Tokyo Tech community strives to make significant contributions to society through high-impact research.

For more information, please click here

Contacts:
Emiko Kawaguchi
Public Relations Section,
Tokyo Institute of Technology

+81-3-5734-2975

*Corresponding authors email:

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Chemistry

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Possible Futures

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Photonics/Optics/Lasers

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project