Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technique uses immune cells to deliver anti-cancer drugs

Artist's conception of nanoparticle-carrying immune cells that target tumors and release drug-loaded nanoparticles for cancer treatment.
CREDIT
Jian Yang, Yixue Su, Penn State
Artist's conception of nanoparticle-carrying immune cells that target tumors and release drug-loaded nanoparticles for cancer treatment. CREDIT Jian Yang, Yixue Su, Penn State

Abstract:
Some researchers are working to discover new, safer ways to deliver cancer-fighting drugs to tumors without damaging healthy cells. Others are finding ways to boost the body's own immune system to attack cancer cells. Researchers at Penn State have combined the two approaches by taking biodegradable polymer nanoparticles encapsulated with cancer-fighting drugs and incorporating them into immune cells to create a smart, targeted system to attack cancers of specific types.

New technique uses immune cells to deliver anti-cancer drugs

University Park, PA | Posted on January 4th, 2017

"The traditional way to deliver drugs to tumors is to put the drug inside some type of nanoparticle and inject those particles into the bloodstream," said Jian Yang, professor of biomedical engineering, Penn State. "Because the particles are so small, if they happen to reach the tumor site they have a chance of penetrating through the blood vessel wall because the vasculature of tumors is usually leaky."

The odds of interacting with cancer cells can be improved by coating the outside of the nanoparticles with antibodies or certain proteins or peptides that will lock onto the cancer cell when they make contact. However, this is still a passive drug delivery technology. If the particle does not go to the tumor, there is no chance for it to bind and deliver the drug.

Yang and Cheng Dong, department head and distinguished professor of biomedical engineering, wanted a more active method of sending drugs to the cancer wherever it was located, whether circulating in the blood, the brain, or any of the other organs of the body.

"I have 10 years of working in immunology and cancer," Dong said. "Jian is more a biomaterials scientist. He knows how to make the nanoparticles biodegradable. He knows how to modify the particles with surface chemistry, to decorate them with peptides or antibodies. His material is naturally fluorescent, so you can track the particles at the same time they are delivering the drug, a process called theranostics that combines therapy and diagnostics. On the other hand, I study the cancer microenvironment, and I have discovered that the microenvironment of the tumor generates kinds of inflammatory signals similar to what would happen if you had an infection."

Immune cells, which were built to respond to inflammatory signals, will be naturally attracted to the tumor site. This makes immune cells a perfect active delivery system for Yang's nanoparticles. The same technology is also likely to be effective for infectious or other diseases, as well as for tissue regeneration, Dong said.

In the first proof of their technology, the two research groups targeted circulating melanoma cells. In a paper published in the current online issue of the journal Small, titled "Immune Cell-Mediated Biodegradable Theranostic Nanoparticles for Melanoma Targeting," the researchers report the use of a novel biodegradable and photoluminescent poly(lactic acid) nanoparticle, loaded with melanoma-specific drugs with immune cells as the nanoparticle carriers. They showed that the immune cells could bind to the melanoma cells under shear stress conditions similar to those in the bloodstream. These experiments were all performed in the laboratory. Next they intend to perform studies in animal models and in solid tumors.

"This is the first study and is just to show that the technology works," Dong said. "This study is not about curing melanoma. There are probably other ways to do that. We used melanoma cells to validate the approach."

In addition to corresponding authors Cheng Dong and Jian Yang, co-lead authors are Zhiwei Xie, postdoctoral scholar in Yang's group, Yixue Su, a master's student in Yang's group, and Gloria Kim, a Ph.D. student advised by both Yang and Dong. Other contributors are Erhan Selvi, an undergraduate researcher in Dong's lab, Chuying Ma, a Ph.D. student in Yang's lab, Virginia Aragon-Sanabria, a Ph.D. student in Dong's lab, and Jer-Tsong Hsieh, from the University of Texas Southwestern Medical Center.

The National Institutes of Health and the National Science Foundation supported this work. Both Dong and Yang are also associates of Penn State's Materials Research Institute and the Huck Institutes of the Life Sciences.

####

For more information, please click here

Contacts:
A'ndrea Elyse Messer

814-865-9481

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Cancer

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Possible Futures

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Nanobiotechnology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizard® AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Research partnerships

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project