Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Movable microplatform floats on a sea of droplets: New technique offers precise, durable control over tiny mirrors or stages

New MIT research could offer a way of making tiny movable parts with no solid connections between the pieces, potentially eliminating a major source of wear and failure in microelectromechanical machines. The new system uses a layer of liquid droplets to support a tiny, movable platform.

Image: Daniel Preston/Device Research Lab
New MIT research could offer a way of making tiny movable parts with no solid connections between the pieces, potentially eliminating a major source of wear and failure in microelectromechanical machines. The new system uses a layer of liquid droplets to support a tiny, movable platform. Image: Daniel Preston/Device Research Lab

Abstract:
Microelectromechanical systems, or MEMS, are tiny machines fabricated using equipment and processes developed for the production of electronic chips and devices. They've found a wide variety of applications in today's consumer electronics, but their moving parts can wear out over time as a result of friction.



A new approach to microelectromechanical systems (MEMS), developed by a team of researchers at MIT, could offer a new way of making movable parts with no solid connections between the pieces, potentially eliminating a major source of wear and failure.

Video: Melanie Gonick/MIT

Movable microplatform floats on a sea of droplets: New technique offers precise, durable control over tiny mirrors or stages

Cambridge, MA | Posted on December 19th, 2016

A new approach developed by researchers at MIT could offer a new way of making movable parts with no solid connections between the pieces, potentially eliminating a major source of wear and failure.

The new system uses a layer of liquid droplets to support a tiny, movable platform, which essentially floats on top of the droplets. The droplets can be water or some other fluid, and the precise movements of the platform can be controlled electrically, through a system that can alter the dimensions of the droplets to raise, lower, and tilt the platform.

The new findings are reported in a paper in Applied Physics Letters, co-authored by Daniel Preston, an MIT graduate student; Evelyn Wang, the Gail E. Kendall Associate Professor of Mechanical Engineering; and five others.

Preston explains that the new system could be used to make devices such as stages for microscope specimens. The focus of the microscope could be controlled by raising or lowering the stage, which would involve changing the shapes of supporting liquid droplets.

The system works by altering the way the droplets interact with the surface below them, governed by a characteristic known as the contact angle. This angle is a measure of how steep the edge of the droplet is at the point where it meets the surface. On hydrophilic, or water-attracting, surfaces, droplets spread out nearly flat, producing a very small contact angle, while hydrophobic, or water-repelling, surfaces cause droplets to be nearly spherical, barely touching the surface, with very large contact angles. On certain kinds of dielectric surfaces, these qualities can be "tuned" across that whole range by simply varying a voltage applied to the surface.

As the surface gets more hydrophobic and the droplets get rounder, their tops rise farther from the surface, thus raising the platform -- in these tests, a thin sheet of copper -- that floats on them. By selectively changing different droplets by different amounts, the platform can also be selectively tilted. This could be used, for example, to change the angle of a mirrored surface in order to aim a laser beam, Preston says. "There are a lot of experiments that use lasers, that could really benefit from a way to make these small-scale movements."

In order to maintain the positioning of the droplets rather than letting them slide around, the team treated the underside of the floating platform. They made the overall surface hydrophobic, but with small circles of hydrophilic material. That way, all the droplets are securely "pinned" to those water-attracting surfaces, keeping the platform securely in position.

In the group's initial test device, the vertical positioning can be controlled to within a precision of 10 microns, or millionths of a meter, over a range of motion of 130 microns.

MEMS devices, Preston says, "often fail when there's a solid-solid contact that wears out, or just gets stuck. At these very small scales, things break down easily."

While the basic technology behind the alteration of droplet shapes on a surface is not a new idea, Preston says, "nobody has used it to move a stage, without any solid-solid contact. The real innovation here is being able to move a stage up and down, and change its angle, without any solid material connections."

In principle, it would be possible to use a large array of electrodes that could be adjusted to move a platform across a surface in precise ways, in addition to up and down. For example, it could be used for "lab on a chip" applications, where a biological sample could be mounted on the platform and then moved around from one test site to another on the microchip.

He says the system is relatively simple to implement and that it would be possible to develop it for specific real-world application fairly rapidly. "It depends how motivated people are," he says. "But I don't see any huge barriers to large-scale use. I think it could be done within a year."

The research team included MIT graduate students Ariel Anders and Yangying Zhu, Research Affiliate Banafsheh Barabadi, alumna Evelyn Tio '14, and undergraduate student DingRan Dai. The work was supported by the Office of Naval Research and the National Science Foundation.

####

For more information, please click here

Contacts:
Karl-Lydie Jean-Baptiste

617-253-1682

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Videos/Movies

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Friction/ Tribology

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Three-dimensional Direction-dependent Force Measurement at the Subatomic Scale: International researchers led by Osaka University develop a microscopy technique to probe materials at the subatomic scale in multiple directions simultaneously May 11th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other not merely making contact April 21st, 2017

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Possible Futures

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

MEMS

Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production November 26th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Military

Cartilage could be key to safe 'structural batteries' January 11th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

E-bandage generates electricity, speeds wound healing in rats December 28th, 2018

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project