Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The University of Bristol uses Kleindiek micromanipulators and the application of SEMGlu in their research on materials from the Japanese nuclear power plant accident at Fukushima

Experimental layout of the FEI™ Helios NanoLab™ 600 dual FIB-SEM with Kleindiek™ MM3A micromanipulator used for particle removal (image first published in open access paper from Elsevier)
Experimental layout of the FEI™ Helios NanoLab™ 600 dual FIB-SEM with Kleindiek™ MM3A micromanipulator used for particle removal (image first published in open access paper from Elsevier)

Abstract:
EM Resolutions, manufacturers and suppliers of tools and accessories for users of electron microscopes, report on the research of Peter Martin from the University of Bristol. He is applying Kleindiek micromanipulators in the characterisation of materials resulting from the accident at the Japanese nuclear power station.

The University of Bristol uses Kleindiek micromanipulators and the application of SEMGlu in their research on materials from the Japanese nuclear power plant accident at Fukushima

Saffron Walden, UK | Posted on October 11th, 2016

PhD student, Peter Martin, is a member of the School of Physics at the University of Bristol. His research focuses on the March 2011 incident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan and its effects at both the metre and micron scales. He has used an unmanned aerial vehicle to investigate the evolving distribution of contamination as well as using novel micro-analysis techniques to isolate and subsequently study tiny fragments of fallout material collected from around the crippled plant. This has potential impact on human health and the background to this is well documented from short-lived radioisotopes to longer life elements.

When he and his colleagues started the project and looked at the current state of the work surrounding the study of material ejected from the FDNPP, it became apparent the lack of work that was being conducted on individual particles of fallout material. Only a few studies were being performed on material collected from air sampling filters at a few locations close as well as further away from the plant. Previous work within the Interface Analysis Centre at the University of Bristol has extensively used Kleindiek MM3A-EM Micromanipulators (EM Resolutions, Cambridge, UK) for a range of applications (TEM sample preparation, in-situ force measurements and electrical probe-based characterisation). They saw the potential to apply the microscopy knowledge and experience within the Centre's new environmental- SEM - enabling much more efficient sample preparation and higher throughput of material. By using micromanipulators in their work, they are able to remove only the particles of interest (after identifying material under the SEM). In this way, they are able to obtain the most accurate isotopic analysis results (free from background interference) in addition to having the samples mounted for an array of further analytical techniques. Micromanipulators such as the Kleindiek MM3A-EM installed within an SEM represent the only method to remove the sub-nanometer fallout particles encountered.

When asked about his choice of manipulator, Martin said “Kleindiek MM3A Micromanipulators are used in our work for other applications as well as the “particle picking” described above. The main advantage of Kleindiek system is their flexibility in operation. Unlike other systems which provide a method of manipulating a needle, the Kleindiek platform can be used for a whole range of applications and is not limited as a niche instrument. We see it is important for us in academia to combine these advantages in a wide range of applications with the potential to also expand further on it.”

Continuing, Martin talks about the experimental methods used. “Using electrostatic attraction between objects and manipulation needles is the common way with which to “pick-up” material. However, in order to ensure that these highly active particles remain attached and do not “fall off” representing a large radiological hazard, the use of Kleindiek SEMGlu has been very important. The very high strength of this vacuum compatible adhesive, which is polymerised under the electron beam, means that the particles are well-adhered for transport and remain on the needle tip during the range of analytical techniques that are carried out on them whilst still attached to the manipulation needle (tungsten or glass). Like the Kleindiek systems in general, other uses for SEMGlu outside of "particle picking” have been explored within the group.”

The work described here is published in detail in an open-access paper in Spectrochimica Acta Part B: Atomic Spectroscopy: http://dx.doi.org/10.1016/j.sab.2015.12.010 .

For more details about Kleindiek Nanotechnik and their micromanipulators available exclusively from EM Resolutions for the UK & Ireland markets, please visit http://emresolutions.com/sem-products/kleindiek-micromanipulators-and-nanotools/ .

####

About EM Resolutions Limited
EM Resolutions was founded in 2012 to manufacture high quality TEM support films for laboratory consumables companies in the UK. Having grown to become a Limited Company and with an increasing range of products, they are now a significant supplier of consumables and accessories for Electron Microscopy. They distribute worldwide directly to end users as well as through a growing network of distributors. The EMR team combine many years’ experience in the microscopy industry with listening to customer needs and supplying the best quality products with a prompt and professional service.

For more information, please click here

Contacts:
EM Resolutions Limited
Business & Technology Centre
Chroma House, Shire Hill
Saffron Walden
Essex CB11 3AQ
T +44 (0)1799 522500
www.emresolutions.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997
http://www.talking-science.com/

Copyright © EM Resolutions Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project