Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanodomains of reactive oxygen species control mitochondrial energy output: Using a new tool, researchers can study localized reactive oxygen species signals that control mitochondrial function in health and disease

Abstract:
Over the years, there have been many efforts to use antioxidants to prevent or help treat various diseases and aging. While reactive oxygen species (ROS), can damage and kill cells - these molecules have also been implicated in normal biochemical processes. Now, researchers have developed tools to study these ephemeral molecules in small quarters of the cell, and using these techniques, have shown that the cell manages the conflicting effects of ROS by sequestering the molecule to tiny compartments or nanodomains where it acts locally, without damaging surrounding organelles or DNA. The findings, published July 6th in the Cell Press journal Molecular Cell, provide new insight into how the cell uses this toxic but essential chemical.

Nanodomains of reactive oxygen species control mitochondrial energy output: Using a new tool, researchers can study localized reactive oxygen species signals that control mitochondrial function in health and disease

Philadelphia, PA | Posted on July 9th, 2016

"Reactive oxygen species are an essential part of the biochemistry of life," says senior author Gyorgy Hajnoczky, M.D., Ph.D., Professor at the MitoCare Center of the Department of Pathology, Anatomy and Cell Biology at the Sidney Kimmel Medical College of Thomas Jefferson University. "Many proteins in the cell are sensitive to ROS, and will change their function when exposed to this chemical."

For many years, biologists had assumed that biochemical reactions occurred cellwide in the cytoplasm. Although that view has started to change in recent years, the field still lacked the ability to track exactly when and where molecules like ROS functioned, making it difficult to tease apart their roles in normal physiology and disease processes alike. "We're just beginning to appreciate that much of cellular function happens at short distances, between nearly touching organelles," says Dr. Hajnoczky.

Using components of previously published technology, Dr. Hajnoczky and colleagues created a tool to track ROS at the interface of two organelles: the endoplasmic reticulum (ER), which acts as the biosynthetic conveyor belt of the cell, and the mitochondria, which makes the cell's energy. Although these organelles have distinct functions, they are often in close communication with one another in order to coordinate their outputs in support of the cell's changing needs.

The new tool delivered the ROS sensor to the parts of the mitochondria and ER organelles that were as close to one another as neuronal synapses and could therefore locally communicate with each other, what Dr. Hajnoczky refers to as "quasi-synaptic" spaces. Then, the researchers looked at the mitochondria's "on" switch: the release of calcium from ER into the mitochondria, which in turn stimulates energy production.

They saw that the level of ROS in this quasi-synaptic space fluctuated without any cellwide changes. When they investigated further, Dr. Hajnoczky and colleagues showed that ROS came from the mitochondria and stimulated release of calcium from the adjacent ER, but only in short bursts. Calcium regulates mitochondrial energy production, but too much can damage the organelle and even make the mitochondria rupture, also killing the cell. "The ROS creates a local signaling loop that allows just enough calcium to enter the mitochondria and turn on energy production without causing damage. We showed that ROS are important for the amplitude and frequency of the bursts," says Dr. Hajnoczky.

Although others had suggested that ROS could be useful in the cell, "this is one of the first demonstrations of physiological function of ROS as a localized signal at the contact of organelles. It had not been measured before," says Dr. Hajnoczky.

Uncontrolled calcium signaling and ROS in the mitochondria is behind a number of common diseases, such as stroke or heart attack, and is thought to play a role in diseases of aging such as neurodegenerative disease. As a result, the most important contribution of this paper, says Hajnoczky, may be the tool the researchers established. It will help other researchers investigate the disease process of their choosing more fully, and study what happens at the close interactions of ER and mitochondria and virtually any organelle in the cell.

###

This work was supported by NIH grants GM59419 and ES025672, a Hungarian Scientific Research Fund (OTKA K105006), and a 'Momentum' grant from the Hungarian Academy of Sciences. The authors report no conflicts of interest.

Article reference: DM Booth et al., Redox Nanodomains are Induced by and Control Calcium Signaling at the ER-mitochondrial Interface," Mol Cell., 2016.

####

About Thomas Jefferson University
Our newly formed organization, Jefferson, encompasses Thomas Jefferson University and Jefferson Health, representing our academic and clinical entities. Together, the people of Jefferson, 19,000 strong, provide the highest-quality, compassionate clinical care for patients, educate the health professionals of tomorrow, and discover new treatments and therapies that will define the future of health care.

Jefferson Health comprises five hospitals, 17 outpatient and urgent care locations, as well as physician practices and everywhere we deliver care throughout the city and suburbs across Philadelphia, Montgomery and Bucks Counties in Pa., and Camden County in New Jersey. Together, these facilities serve nearly 73,000 inpatients, 239,000 emergency patients and 1.7 million outpatient visits annually. Thomas Jefferson University Hospital is the largest freestanding academic medical center in Philadelphia. Abington Hospital is the largest community teaching hospital in Montgomery or Bucks counties. Other hospitals include Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; and Abington-Lansdale Hospital in Hatfield Township.

Thomas Jefferson University enrolls more than 3,800 future physicians, scientists, nurses and healthcare professionals in the Sidney Kimmel Medical College (SKMC), Jefferson Colleges of Biomedical Sciences, Health Professions, Nursing, Pharmacy, Population Health and is home of the National Cancer Institute (NCI)-designated Sidney Kimmel Cancer Center.

For more information, please click here

Contacts:
Edyta Zielinska

215-955-5291

Copyright © Thomas Jefferson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project