Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 3-D paper-based microbial fuel cell operating under continuous flow condition

The device allows flow of the streams of Shewanella Oneidensis MR-1 (yellow) and the Potassium Ferricyanide (white) into the chambers. Proton exchange membrane is placed between the two chambers to separate the two liquids as well as allow the positively charged ions released in the biocatalytic breakdown of the anolyte to flow from the anode to the cathode.
CREDIT: TECHNOLOGY
The device allows flow of the streams of Shewanella Oneidensis MR-1 (yellow) and the Potassium Ferricyanide (white) into the chambers. Proton exchange membrane is placed between the two chambers to separate the two liquids as well as allow the positively charged ions released in the biocatalytic breakdown of the anolyte to flow from the anode to the cathode.

CREDIT: TECHNOLOGY

Abstract:
A team of researchers from the Iowa State University in Ames, IA has demonstrated a proof-of-concept three-dimensional paper-based microbial fuel cell (MFC) that could take advantage of capillary action to guide the liquids through the MFC system and to eliminate the need for external power. Their report appears in the forthcoming issue of the journal TECHNOLOGY.

3-D paper-based microbial fuel cell operating under continuous flow condition

Singapore | Posted on July 5th, 2016

The paper-based MFC runs for five days and shows the production of current as a result of biofilm formation on anode. The system produces 1.3 μW of power and 52.25 μA of current yielding a power density of approximately 25 W/m3 for this experiment. These results show that the paper-based microbial fuel cells can create power in an environmentally friendly mode without the use of any outside power. "All power created in this device is useable because no electricity is needed to run the fluids through the device. This is crucial in the advancement of these devices and the expansion of their applications." says Nastaran Hashemi, PhD, Assistant Professor of Mechanical Engineering and the senior author of the paper.

The biofilm formation on the carbon cloth during the test provides further evidence that the current measured was the result of the bio-chemical reaction taking place. This is important because the biofilm plays a vital role in current production of a microbial fuel cell. Increased biofilm size and thickness ultimately leads to increased current production. Individual bacterial cells metabolize electron-rich substances in a complex process involving many enzyme-catalyzed reactions. The electrons are then free to travel to the anode through one of many modes of electron transport. Electron transport is very complicated, and evidence suggests that it is unique to each type of bacteria. For Shewanella Oneidensis MR-1, the most predominantly known ways of shuttling electrons from the individual bacteria cells to the anode are through direct contact, excreted soluble redox molecules, and biological nanowires. Of these, it is widely believed that excreted soluble redox molecules serving as extracellular electron shuttles makes up for as much as 70% of electron transfer mechanisms from individual bacterial cells to the electrode. Moreover, it is shown that direct contact between individual S. Oneidensis MR-1 and the electrode has little impact on the current generation, supporting a mediated electron transfer mechanism. Biofilm helps with the adsorption of the redox molecules to the electrode, which makes it important to have in high power density microbial fuel cells. There are not many studies on power production from paper-based microbial fuel cells running for few days. Without enough time for biofilm to form, the reported current and power data would predominantly be associated with extracellular electron transfer, which represents does not fully represent electrical producing capabilities of microbial fuel cells. This device for the first time demonstrates the longer duration of use and ability to operate individually, a development that could help increase the number of situations where microbial fuel cells can be applied.

The Iowa State University team is currently exploring options to better control the voltage output and create constant current. Controlled environment tests will aid in the regulation of the systems output and yield more stable results. For optimal usability and decrease in cost, the team would also like to explore a device that would not need to use Nafion and Potassium Ferricyanide in its application. Additional co-authors of the paper are Niloofar Hashemi, Joshua Lackore, Farrokh Sharifi, Payton Goodrich, and Megan Winchell.

###

This work was partially funded by Iowa State University and the William March Scholar fund. We would like to thank Ashley Christopherson, Peter Meis, and Luke Wagner for their assistance with this project.

Corresponding author for this study in TECHNOLOGY is Nastaran Hashemi, .

####

For more information, please click here

Contacts:
Philly Lim

65-646-65775

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project