Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atoms placed precisely in silicon can act as quantum simulator

Abstract:
In a proof-of-principle experiment, researchers at UNSW Australia have demonstrated that a small group of individual atoms placed very precisely in silicon can act as a quantum simulator, mimicking nature - in this case, the weird quantum interactions of electrons in materials.

Atoms placed precisely in silicon can act as quantum simulator

Sydney, Australia | Posted on April 24th, 2016

The publication of this latest advance towards the development of a silicon-based quantum computer at UNSW coincided with the opening of the university's new quantum computing laboratories by Australian Prime Minister Malcolm Turnbull.

"Previously this kind of exact quantum simulation could not be performed without interference from the environment, which typically destroys the quantum state," says senior author Professor Sven Rogge, Head of the UNSW School of Physics and program manager with the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T).

"Our success provides a route to developing new ways to test fundamental aspects of quantum physics and to design new, exotic materials - problems that would be impossible to solve even using today's fastest supercomputers."

The study is published in the journal Nature Communications. The lead author was UNSW's Dr Joe Salfi and the team included CQC2T director Professor Michelle Simmons, other CQC2T researchers from UNSW and the University of Melbourne, as well as researchers from Purdue University in the US.

Two dopant atoms of boron only a few nanometres from each other in a silicon crystal were studied. They behaved like valence bonds, the "glue" that holds matter together when atoms with unpaired electrons in their outer orbitals overlap and bond.

The team's major advance was in being able to directly measure the electron "clouds" around the atoms and the energy of the interactions of the spin, or tiny magnetic orientation, of these electrons.

They were also able to correlate the interference patterns from the electrons, due to their wave-like nature, with their entanglement, or mutual dependence on each other for their properties.

"The behaviour of the electrons in the silicon chip matched the behaviour of electrons described in one of the most important theoretical models of materials that scientists rely on, called the Hubbard model," says Dr Salfi.

"This model describes the unusual interactions of electrons due to their wave-like properties and spins. And on of its main applications is to understand how electrons in a grid flow without resistance, even though they repel each other," he says.

The team also made a counterintuitive find - that the entanglement of the electrons in the silicon chip increased the further they were apart.

"This demonstrates a weird behaviour that is typical of quantum systems," says Professor Rogge.

"Our normal expectation is that increasing the distance between two objects will make them less, not more, dependent on each other.

"By making a larger set of dopant atoms in a grid in a silicon chip we could realise a vision first proposed in the 1980s by the physicist Richard Feynman of a quantum system that can simulate nature and help us understand it better," he says.

####

For more information, please click here

Contacts:
Deborah Smith

61-478-492-060

Dr Joe Salfi


Professor Sven Rogge

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project