Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new way to get electricity from magnetism: 'Inverse spin Hall effect' works in several organic semiconductors

The upper part of this illustration shows the device, built on a small glass slide, that was used in experiments showing that so-called spin current could be converted to electric current using several different organic polymer semiconductors and a phenomenon known as the inverse spin Hall effect. The bottom illustration shows the key, sandwich-like part of the device. An external magnetic field and pulses of microwaves create spin waves in the iron magnet. When those waves hit the polymer or organic semiconductor, they create spin current, which is converted to an electrical current at the copper electrodes.
CREDIT: Kipp van Schooten and Dali Sun, University of Utah
The upper part of this illustration shows the device, built on a small glass slide, that was used in experiments showing that so-called spin current could be converted to electric current using several different organic polymer semiconductors and a phenomenon known as the inverse spin Hall effect. The bottom illustration shows the key, sandwich-like part of the device. An external magnetic field and pulses of microwaves create spin waves in the iron magnet. When those waves hit the polymer or organic semiconductor, they create spin current, which is converted to an electrical current at the copper electrodes.

CREDIT: Kipp van Schooten and Dali Sun, University of Utah

Abstract:
y showing that a phenomenon dubbed the "inverse spin Hall effect" works in several organic semiconductors - including carbon-60 buckyballs - University of Utah physicists changed magnetic "spin current" into electric current. The efficiency of this new power conversion method isn't yet known, but it might find use in future electronic devices including batteries, solar cells and computers.

A new way to get electricity from magnetism: 'Inverse spin Hall effect' works in several organic semiconductors

Salt Lake City, UT | Posted on April 19th, 2016

"This paper is the first to demonstrate the inverse spin Hall effect in a range of organic semiconductors with unprecedented sensitivity," although a 2013 study by other researchers demonstrated it with less sensitivity in one such material, says Christoph Boehme, a senior author of the study published April 18 in the journal Nature Materials.

"The inverse spin Hall effect is a remarkable phenomenon that turns so-called spin current into an electric current. The effect is so odd that nobody really knows what this will be used for eventually, but many technical applications are conceivable, including very odd new power-conversion schemes," says Boehme, a physics professor.

His fellow senior author, distinguished professor Z. Valy Vardeny, says that by using pulses of microwaves, the inverse spin Hall effect and organic semiconductors to convert spin current into electricity, this new electromotive force generates electrical current in a way different than existing sources.

Coal, gas, hydroelectric, wind and nuclear plants all use dynamos to convert mechanical force into magnetic-field changes and then electricity. Chemical reactions power modern batteries and solar cells convert light to electrical current. Converting spin current into electrical current is another method.

Scientists already are developing such devices, such as a thermoelectric generator, using traditional inorganic semiconductors. Vardeny says organic semiconductors are promising because they are cheap, easily processed and environmentally friendly. He notes that both organic solar cells and organic LED (light-emitting diode) TV displays were developed even though silicon solar cells and nonorganic LEDs were widely used.

Vardeny and Boehme stressed that the efficiency at which organic semiconductors convert spin current to electric current remains unknown, so it is too early to predict the extent to which it might one day be used for new power conversion techniques in batteries, solar cells, computers, phones and other consumer electronics.

"I want to invoke a degree of caution," Boehme says. "This is a power conversion effect that is new and mostly unstudied."

Boehme notes that the experiments in the new study converted more spin current to electrical current than in the 2013 study, but Vardeny cautioned the effect still "would have to be scaled up many times to produce voltages equivalent to household batteries."

The new study was funded by the National Science Foundation and the University of Utah-NSF Materials Research Science and Engineering Center. Study co-authors with Vardeny and Boehme were these University of Utah physicists: research assistant professors Dali Sun and Hans Malissa, postdoctoral researchers Kipp van Schooten and Chuang Zhang, and graduate students Marzieh Kavand and Matthew Groesbeck.

From spin current to electric current

Just as atomic nuclei and the electrons that orbit them carry electrical charges, they also have another inherent property: spin, which makes them behave like tiny bar magnets that can point north or south.

Electronic devices store and transmit information using the flow of electricity in the form of electrons, which are negatively charged subatomic particles. The zeroes and ones of computer binary code are represented by the absence or presence of electrons within silicon or other nonorganic semiconductors.

Spin electronics - spintronics - holds promise for faster, cheaper computers, better electronics and LEDs for displays, and smaller sensors to detect everything from radiation to magnetic fields.

The inverse spin Hall effect first was demonstrated in metals in 2008, and then in nonorganic semiconductors, Vardeny says. In 2013, researchers elsewhere showed it occurred in an organic semiconductor named PEDOT:PSS when it was exposed to continuous microwaves that were relatively weak to avoid frying the semiconductor.

But Boehme and Vardeny say the electrical current generated in that study by the inverse spin Hall effect was small - nanovoltages - and was obscured by microwave heating of the sample and other undesired effects.

"We thought, let's build different devices so these spurious effects were eliminated or very small compared with the effect we wanted to observe," Boehme says.

In the new study, the researchers used short pulses of more powerful microwaves to utilize the inverse spin Hall effect and convert a spin current to electric current in seven organic semiconductors, mostly at room temperature.

One organic semiconductor was PEDOT:PSS - the same material in the 2013 study. The others were three platinum-rich organic polymers, two so-called pi-conjugated polymers and the spherical carbon-60 molecule named buckminsterfullerene because it looks like a pair of geodesic domes popularized by the late architect Buckminster Fuller.

The carbon-60 proved surprisingly to be the most efficient semiconductor at converting spin waves into electrical current, Vardeny says.

How the experiments were performed

The Utah physicists take multiple steps to convert spin current to electrical current. They begin with a small glass slide, about 2.1-inches long and one-sixth-inch wide. Two electrical contacts are attached to one end of the glass slide. Thin, flat copper wires run the length of the slide, connecting the contacts at one end with a "sandwich" at the other end that includes the glass at the bottom, the organic polymer semiconductor being tested in the middle and a nickel-iron ferromagnet on top.

This device then is inserted lengthwise into a metal tube about 1-inch diameter and 3.5 inches long. A nonconducting material surrounds the device inside this tube, which then is inserted into a table-sized magnet that generates a magnetic field.

"We apply a magnetic field and leave it more or less constant," Boehme says. "Then we hook up the two contacts to a voltage meter and start measuring the voltage coming out of the device as a function of time."

With just the magnetic field, no electrical current was detected. But then the Utah physicists bombarded the organic semiconductor device with pulses of microwaves - as powerful as those from a home microwave oven but in pulses ranging from only 100 to 5,000 nanoseconds (the latter equal to one 200,000th of a second).

"All of a sudden we saw a voltage during that pulse," Boehme says.

Vardeny says the microwave pulses generate spin waves in the device's magnet, then the waves are converted into spin current in the organic semiconductor, and then into an electric current detected as a voltage.

Compared with the 2013 study, the use of microwave pulses in the Utah experiments meant "our power is much higher but the heating is much less and the inverse spin Hall effect is about 100 times stronger," Boehme says.

In effect, the pulsed microwaves provide a way to enhance the inverse spin Hall effect so it can be used to convert power, Vardeny adds.

The new study also showed that the conversion of spin current to electric current works in organic semiconductors via "spin-orbit coupling" - the same process found in inorganic conductors and semiconductors - even though the phenomenon in inorganic and organic materials works in fundamentally different ways, Boehme says.

This coupling is much weaker in organic than in nonorganic semiconductors, but "the big achievement we made was to find an experimental method sensitive enough to reliably measure these very weak effects in organic semiconductors," Boehme says.

####

For more information, please click here

Contacts:
Lee J. Siegel

801-244-5399

University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773
fax: 801-585-3350

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Organic Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Hardware

The present and future of computing get a boost from new research July 21st, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project