Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dartmouth-led team devises new technique to probe 'noise' in quantum computing

Dartmouth College Professor Lorenza Viola and her collaborators have devised a new way to "sense" and control external noise in quantum computing.
CREDIT: Dartmouth College
Dartmouth College Professor Lorenza Viola and her collaborators have devised a new way to "sense" and control external noise in quantum computing.

CREDIT: Dartmouth College

Abstract:
Dartmouth College and Griffith University researchers have devised a new way to "sense" and control external noise in quantum computing.

Dartmouth-led team devises new technique to probe 'noise' in quantum computing

Hanover, NH | Posted on April 19th, 2016

Quantum computing may revolutionize information processing by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics, but figuring out how to engineer such a machine remains elusive.

The findings appear in the journal Physical Review Letters. A PDF is available on request.

"Quantum noise spectroscopy" is an emerging field within quantum physics that seeks to characterize and control the noise affecting quantum systems. Quantum systems, which include tiny objects such as atoms, electrons and photons, display counterintuitive properties, such as the ability to be in a superposition of two different states simultaneously. These quantum properties are essential for quantum computing, but they are easily lost through decoherence, when quantum systems are subject to "noise" in an external environment. Because a quantum system is always embedded in a larger environment, some noise is unavoidable. A quantitative understanding of environmental noise is, therefore, crucial to accurately model the behavior of quantum systems and determine whether they can perform in applications such as quantum computing.

Quantum noise spectroscopy offers an elegant solution to this challenge by using a quantum system as a "probe" of its own environment. Typically, an experimenter may control the state of a quantum system through the application of external fields, such as optical or magnetic fields. In a quantum noise spectroscopy protocol, the quantum system is subjected to a "control sequence" -- that is, a suitably designed application of these fields. The quantum system evolves dynamically due to both the control sequence and the unavoidable interactions with the environment. Careful selection of control sequences combined with measurement of the quantum system enables the researchers to extract information about the environmental noise.

"Prior to our work, quantum noise spectroscopy had two major shortcomings: it was restricted to environmental noise that was (1) classical and (2) Gaussian," says co-author Lorenza Viola, a professor of physics at Dartmouth. "The assumption of Gaussianity implies that the noise has very special properties -- it can be fully describes solely in terms of "two-point correlation functions" -- while the assumption of classicality precludes the possibility that the environment is itself in a quantum-mechanical regime. These assumptions break down in many realistic situations of interest, which prohibits accurate and general characterization of environmental noise. For example, superconducting qubits, one of the most promising systems for scalable quantum computing, are subject to noise with observable deviations from Gaussianity."

In their new work, the Dartmouth-Griffith researchers designed a new family of control sequences and show how they can extract information about the higher-dimensional (beyond two-point) correlation functions of the noise. Knowledge of these correlation functions offers a complete characterization of the noise, enabling accurate modeling of the interaction between a quantum system and its environment. The researchers demonstrate noise spectroscopy protocols that apply to both classical, non-Gaussian and a class of paradigmatic quantum, non-Gaussian environments. To the researchers' knowledge, the study of higher dimensional correlation functions for quantum noise sources is an entirely new research area.

"Quantum technologies have the potential to revolutionize computing and communication," Viola says. "One of the primary obstacles towards realizing these technologies in the lab, however, is the decoherence of quantum systems through interactions with the environment. Quantum noise spectroscopy characterizes environmental noise, enabling detailed dynamical modeling and offering physical insight into the process of decoherence. This information can be used to devise strategies to optimize the protection of quantum systems from environmental noise. Previous work did not apply to quantum or non-Gaussian noise sources, excluding a large class of quantum systems. Our work overcomes these limitations."

###

####

For more information, please click here

Contacts:
John Cramer

603-646-9130

Lorenza Viola

Copyright © Dartmouth College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project