Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Catalyst could make production of key chemical more eco-friendly

This is nitrogen-rich graphene festooned with finely tuned copper nanoparticles selectively converts carbon dioxide to ethylene, a key commodity chemical.
CREDIT: Sun Lab / Brown University
This is nitrogen-rich graphene festooned with finely tuned copper nanoparticles selectively converts carbon dioxide to ethylene, a key commodity chemical.

CREDIT: Sun Lab / Brown University

Abstract:
The world has more carbon dioxide than it needs, and a team of Brown University chemists has come up with a potential way to put some of it to good use.

Catalyst could make production of key chemical more eco-friendly

Providence, RI | Posted on April 10th, 2016

The researchers developed a new composite catalyst using nitrogen-rich graphene dotted with copper nanoparticles. A study, published in the journal Nano Energy, showed that the new catalyst can efficiently and selectively convert carbon dioxide to ethylene, one of the world's most important commodity chemicals.

Ethylene is used to make plastics, construction materials and other products. Chemical companies produce it by the millions of tons each year using processes that usually involve fossil fuels. If excess carbon dioxide can be used to make ethylene, it could help make the chemical industry more sustainable and eco-friendly.

"We hope that this new catalyst could be a step toward a greener way to produce ethylene," said Shouheng Sun, a professor of chemistry and engineering at Brown, whose research team developed the catalyst. "There is much more work to be done to bring such a process to an industrial scale, but this is a start."

Selectivity is key

Carbon dioxide is a stable form of carbon, and breaking it down into active carbon forms is no easy task. While some catalysts can do the job, they generally do not have good selectivity, meaning they create a variety of different reaction products.

"Most other techniques produce ethylene, methane, carbon monoxide -- all kinds of things that you would then have to separate," Sun said. "We wanted something that could be more selective."

Qing Li, a former postdoctoral fellow in Sun's lab and now a professor at Huazhong University of Science and Technology in China, thought a catalyst that combines copper nanoparticles with graphene might be effective. Sun's lab had previously shown that metal nanoparticles, when tuned to the right size, could have increased reactivity. Graphene, one-atom-thick sheets of carbon, has also been shown to increase catalyst reactivity.

Li, the new study's lead author, experimented with copper nanoparticles deposited on several different graphene surfaces -- pure graphene, graphene oxide and graphene doped with nitrogen in various forms. Nitrogen doping is a process of introducing nitrogen atoms into the lattice of carbon atoms that make up graphene.

The study showed that seven-nanometer copper particles deposited on graphene doped with pyridinic nitrogen (an arrangement that causes nitrogen atoms to be bonded to two carbon atoms) had the best performance. That arrangement had selectivity for ethylene of 79 percent, significantly higher than other approaches, according to the study.

"Synergistic effect"

It is not entirely clear what about the new catalyst is responsible for its performance, but Li and Sun propose a few ideas.

"It's probably a synergistic effect," Li said. "The pyridinic nitrogen helps to anchor the copper nanoparticles and change the electronic environment around them, which changes the reaction pathway to selectively produce ethylene."

Sun noted that carbon dioxide can serve as a weak Lewis acid -- a compound that accepts electrons from donor compounds. Pyridinic nitrogen in the nitrogen-doped graphene forms a Lewis base center.

"We think that the presence of this Lewis base center helps to draw more carbon dioxide close to the copper for the observed catalysis," Sun said.

The researchers plan to continue work with the new catalyst, possibly using it in tandem with other catalysts to produce different reaction products.

"The possibilities are exciting," Sun said.

###

Other authors on the paper were Wenlei Zhu, Jiaju Fu and Hongyi Zhang from Brown, and Gang Wu from SUNY Buffalo. The work was supported by the U.S. Army Research Laboratory and the U.S. Army Research Office (W911NF-15-1-0147 and W911NF-11-1-0353), and the National Science Foundation ( CHE-1240020).

####

For more information, please click here

Contacts:
Kevin Stacey

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project