Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New way to control particle motions on 2-D materials

Researchers used the spin of light to guide the flow of optical information. Shining right-circularly polarized light on nanoribbons made of special 2-D materials enables light to flow forward on one edge and backward on the other edge. Changing the polarization of the light causes the guided modes to reverse directions.

Image: Anshuman Kumar Srivastava
Researchers used the spin of light to guide the flow of optical information. Shining right-circularly polarized light on nanoribbons made of special 2-D materials enables light to flow forward on one edge and backward on the other edge. Changing the polarization of the light causes the guided modes to reverse directions.

Image: Anshuman Kumar Srivastava

Abstract:
Researchers at MIT and other institutions have found a new phenomenon in the behavior of a kind of quasiparticles called plasmons as they move along tiny ribbons of two-dimensional materials such as graphene and TMDs (transition metal dichalcogenides), which have a hexagonal structure resembling chicken wire. The team found that these plasmons can be separated into two different streams moving in opposite directions at the edges of the ribbons, like traffic on a two-lane highway, without the need for strong magnetic fields or other exotic conditions.

New way to control particle motions on 2-D materials

Cambridge, MA | Posted on March 22nd, 2016

The new research was carried out by MIT associate professor of mechanical engineering Nicholas X. Fang, recent PhD graduate from that department Anshuman Kumar, and four other researchers from the University of Wisconsin at Milwaukee, Hong Kong Polytechnic University, and the University of Minnesota. The work was reported in a paper in the journal Physical Review B.

Other groups had previously observed such separated flows, Fang says, but that previous work required the use of powerful magnetic fields. Instead, the new process relies largely on optical effects, he says, using beams of circularly polarized light.

The findings are based on exotic states of matter that can occur in two-dimensional materials that, unlike graphene, have a characteristic known as a bandgap, necessary for devices such as transistors or solar cells (and also in graphene that is modified to have a bandgap). These states of matter are based on quantum physics phenomena such as Berry curvature, which occur in configurations known as massive Dirac systems. Although such systems are a hot area of research these days, the researchers say this particular class of phenomena, involving surface electromagnetic properties known as surface plasmons, has been relatively unexplored until now.

Clustering in "valleys"

In the new work, the team showed that shining beams of circularly polarized light onto the graphene ribbons causes electrons in the material to cluster into two different "valleys" in the electronic band structure. The peculiar symmetry properties of this system gives rise to a phenomenon called Berry curvature, which can be thought of as an artificial magnetic field.

Under these conditions, these valleys correspond to motions of the plasmons -- which are a kind of oscillation of electron density in the material -- in opposite directions on the two edges of the material. The graphene ribbons are just 50 nanometers (billionths of a meter) in width.

This effective magnetic field can be measured by sending in a second polarized beam, whose transmission can then be detected so that the changes in its polarization give a direct measurement of the effects taking place in the surface plasmons.

"This is exciting," Fang explains, because it opens up a whole new approach to both manipulating the electromagnetic behavior of such systems and measuring the results of these manipulations.

This could suggest possibilities for new kinds of electro-optical devices, he says. For example, some experimental photonic systems require devices called optical isolators, which prevent beams of light in precision optical systems from being reflected back to their source and causing interference. But these isolators, which require strong magnetic fields, are inherently bulky, he says, limiting the usefulness of such systems. "With this concept," he says, "it's possible to replace these bulky optical isolators with one monolayer of two-dimensional material."

Chip-scale isolation

With such a system, Kumar says, it should be possible "to do chip-scale optical isolation without the need for a magnetic field." To achieve the same degree of optical isolation that this system would provide with a beam of light, Kumar says, with a conventional system would require a magnetic field with a strength of 7 tesla -- a very strong field that would require a special research facility. (By comparison, the Earth's magnetic field measures just 32 millionths of a tesla).

Theoretically, this could lead to applications such as new types of memory devices where information could be both written and read by using beams of polarized light, making them relatively immune to electromagnetic or other kinds of interference, the researchers say.

###

In addition to Fang and Kumar, the team included Andrei Nemilentsau and George Hanson at the University of Wisconsin at Madison, Kin Hung Fung at Hong Kong Polytechnic University, and Tony Low at the University of Minnesota. The work was supported by the National Science Foundation and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project