Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A system that could change the world – a new and innovative flow cell delivers first-class electric performance and is safe to use: nanoFlowcell AG Achieves Breakthrough in Flow Cell Technology

The adaptation of nanoFlowcell® to an electric car is a complex engineering challenge; having our flow cell technology powering a house or small town is comparably straight forward.
The adaptation of nanoFlowcell® to an electric car is a complex engineering challenge; having our flow cell technology powering a house or small town is comparably straight forward.

Abstract:
· nanoFlowcell® makes electric drive suitable for everyday use and fit for the environment

· nanoFlowcell® systems are an environmentally friendly form of energy supply and energy storage – powerful, safe to use, harmless to health, kind to the environment and with zero harmful emissions

· The performance of nanoFlowcell® is orders of magnitude better than conventional batteries, accumulators or flow cells

· nanoFlowcell® has enormous application potential on land, on water and in the air

· It costs less than 10 euro cents per litre to produce the energy carrier on an industrial level

A system that could change the world – a new and innovative flow cell delivers first-class electric performance and is safe to use: nanoFlowcell AG Achieves Breakthrough in Flow Cell Technology

Geneva, Switzerland | Posted on March 3rd, 2016

nanoFlowcell AG recently demonstrated the performance of its nanoFlowcell® accumulator. The sporty electric QUANTiNO developed by the company and powered by nanoFlowcell® drove 14 hours non-stop without pausing to refuel. The nanoFlowcell® drive thus lasted orders of magnitude longer than could currently be achieved by the most powerful electric car equipped with lithium-ion technology. Compared with conventional flow cells, nanoFlowcell AG succeeded in raising the power output of the nanoFlowcell® by a factor of around 20. A crucial factor here is the increased energy density of the patent-pending electrolyte liquid developed by the company, standing at around 600 watt hours per litre.

“Our breakthrough in flow cell technology is a revolution for electromobility and for the way we will produce energy decentrally in future,” explains Nunzio La Vecchia, the inventor of nanoFlowcell® and Chief Technology Officer of nanoFlowcell AG. The potential applications for the nanoFlowcell® are virtually limitless and our current development shows that our technology can also provide the DNA for a super sports car. But nanoFlowcell® could do so much more – such as deliver the electricity for aircraft on-board systems, replace large, high-emissions marine diesel engines or supply sustainable eco-electricity to homes and residential areas.

And wherever the thermal runaway of lithium-ion batteries can have devastating effects, where the use of fossil fuels has a harmful impact on our health and environment, where the noise of internal combustion engines has a negative impact on those living on land or in the sea, the use of nanoFlowcell® would be sensible and desirable.

“We started with the combination of flow cell and car, because it represented probably the most complex application for our technology and therefore the greatest challenge, while at the same time being the most straightforward and understandable to communicate,” said La Vecchia. The downside is the somewhat higher development costs in the upper eight-figure range.

Another benefit of the technology is the fact that the nanoFlowcell® electrolytes are neither flammable nor explosive. They are kind to the environment, sustainable and harmless to health. In operation, the nanoFlowcell® is virtually silent, long-lasting and highly stable. According to the company’s own calculations, large-scale industrial manufacture of the electrically charged liquid required to run a nanoFlowcell® drive would cost a few cents per litre.

Because the power of the nanoFlowcell® is dependent on the surface area of its membrane, the volume of electrolyte stored and the type of electrolyte used, the drive can also be scaled as required, making it adaptable to a diverse array of applications. Theoretically, a nanoFlowcell® could also power a mobile phone. As long as positively and negatively charged electrolyte fluids are being pumped past the cell membrane and an exchange of ions is taking place, the cell produces energy for the electric motors – silently and with no harmful emissions.

In an initial endurance test, during which the QUANTiNO powered by nanoFlowcell® drove non-stop for 14 hours, its overall consumption stood at around two-times 35 litres of electrolyte liquid, with an average energy consumption of around 12 to 14 kWh per 100 kilometres. This is a previously unheard-of endurance figure for car running on electricity alone. A comparable nanoFlowcell® could also be installed in a sports boat or aeroplane. La Vecchia’s development team has already embarked on this task to show that nanoFlowcell® technology can pass muster anywhere – on land, on water and in the air.

“With nanoFlowcell®, we are demonstrating that electromobility does not mean having to make compromises. Vehicles driven by nanoFlowcell® are sporty and dynamic, kind to the environment, fuel efficient and have zero harmful emissions,” said Nunzio La Vecchia. “The nanoFlowcell® technology we have developed is a real alternative for the mobility of the future and for fulfilling the long-term need for alternative fuels.”

####

About nanoFlowcell AG
Established towards the end of 2013, nanoFlowcell AG is an innovative research and development company headquartered in Lichtenstein. The focus of the research work performed by nanoFlowcell AG is on flow cell powertrain systems. Aside from further developing its QUANT range of vehicles, the company is also investigating possible applications of its nanoFlowcell® technology in other sectors and industries. To this end, two companies were founded in 2014, nanoProduction GmbH and nanoResearch SA, both wholly owned subsidiaries of nanoFlowcell AG.

For all the latest information on the development progress of the nanoFlowcell® system and the QUANT product family, please visit our website at www.nanoflowcell.com.

For more information, please click here

Contacts:
nanoFlowcell AG press team:
c/o Hill+Knowlton Strategies GmbH

Phone: +49 211 98709721

Copyright © nanoFlowcell AG

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project