Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New molecular property may mean more efficient solar and opto-electronic devices: Unexpected property in organic semiconductor molecule could lead to more efficient and cost-effective materials for cell phone and laptop displays

A new paper from UMass Amherst describes a structure that will make it easier to use a certain molecule for new applications, for example in devices that use polarized light input for optical switching, by exploiting its directionality. Inset shows a structural schematic of the TAT crystal packing geometry and direction of charge separation.
CREDIT: UMass Amherst/Mike Barnes
A new paper from UMass Amherst describes a structure that will make it easier to use a certain molecule for new applications, for example in devices that use polarized light input for optical switching, by exploiting its directionality. Inset shows a structural schematic of the TAT crystal packing geometry and direction of charge separation.

CREDIT: UMass Amherst/Mike Barnes

Abstract:
Chemists and polymer scientists collaborating at the University of Massachusetts Amherst report in Nature Communications this week that they have for the first time identified an unexpected property in an organic semiconductor molecule that could lead to more efficient and cost-effective materials for use in cell phone and laptop displays, for example, and in opto-electronic devices such as lasers, light-emitting diodes and fiber optic communications.

New molecular property may mean more efficient solar and opto-electronic devices: Unexpected property in organic semiconductor molecule could lead to more efficient and cost-effective materials for cell phone and laptop displays

Amherst, MA | Posted on February 25th, 2016

Physical chemist Michael Barnes and polymer scientist Alejandro Briseño, with doctoral students Sarah Marques, Hilary Thompson, Nicholas Colella and postdoctoral researcher Joelle Labastide, discovered the property, directional intrinsic charge separation, in crystalline nanowires of an organic semiconductor known as 7,8,15,16-tetraazaterrylene (TAT).

The researchers saw not only efficient separation of charges in TAT, but a very specific directionality that Barnes says "is quite useful. It adds control, so we're not at the mercy of random movement, which is inefficient. Our paper describes an aspect of the nanoscopic physics within individual crystals, a structure that will make it easier to use this molecule for new applications such as in devices that use polarized light input for optical switching. We and others will immediately exploit this directionality."

He adds, "Observing the intrinsic charge separation doesn't happen in polymers, so far as we know it only happens in this family of small organic molecule crystalline assemblies or nanowires. In terms of application we are now exploring ways to arrange the crystals in a uniform pattern and from there we can turn things on or off depending on optical polarization, for example."

However, the UMass Amherst team believes the property is not an oddity unique to this material, but that several materials potentially share it, making the discoveries in TAT interesting to a wide variety of researchers, Barnes says. Similar kinds of observations have been noted in pentacene crystals, he notes, which show something similar but without directionality. In this work supported by the U.S. Department of Energy and UMass Amherst's Center for Hierarchical Manufacturing, they propose that the effect comes from a charge-transfer interaction in the molecule's charge-conducing nanowires that can be programmed.

In the conventional view of harvesting solar energy with organic or carbon-based organic materials, the chemist explains, scientists understood that the organic active layers at work in devices absorb light, which leads to an excited state known as an exciton. In this mechanism, the exciton migrates to an interface boundary where it separates into a positive and negative charge, freeing the voltage to be used as power. "In this view, you hope that the light is well absorbed so the transfer is efficient," he says.

In earlier work, Barnes, Briseño and others at UMass Amherst worked to control the domain size of materials to match what was believed to be the distance an exciton can travel in the time it takes to radiate, he adds. "All of this premised on idea that the mechanism for charge separation is extrinsic, that an external driving force separates the charges," he notes. The goal had been to remove the need for that interface."

Most recently, Briseño and colleagues reached a point in synthesizing crystals where their polymer-based devices were not performing the way they wanted, he relates. Briseño asked Barnes and colleagues to use their special measurement instrumentation to investigate. Barnes and colleagues found a structural defect that Briseño could fix. "We provided some diagnostics to him to improve their crystal growth," Barnes says.

"From this, we noticed clues that there were some very interesting things going on, which led us to the discovery," Barnes adds. "It's fun when science works that way. It was a very nice mutually beneficial relationship."

"What Nature brought us was something really much richer and more interesting than anything we could have anticipated. We thought it was going to be qualitatively similar to previous observations, perhaps different in quantitative particulars, but the real story is far more interesting. In this material, they found the way it packs crystals gives rise to its own separation, an intrinsic property of the crystalline material."

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project