Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The magic of microbes: ONR engineers innovative research in synthetic biology

Dr. Christopher Voigt, a professor of biological engineering at the Massachusetts Institute of Technology, talks about his research in synthetic biology as part of a Distinguished Lecture Series held at the Office of Naval Research, located in Arlington, Va. ONR is recognized globally as a leader in its support of basic research in synthetic biology.
CREDIT: US Navy photo by John F. Williams/Released
Dr. Christopher Voigt, a professor of biological engineering at the Massachusetts Institute of Technology, talks about his research in synthetic biology as part of a Distinguished Lecture Series held at the Office of Naval Research, located in Arlington, Va. ONR is recognized globally as a leader in its support of basic research in synthetic biology.

CREDIT: US Navy photo by John F. Williams/Released

Abstract:
An exciting new scientific frontier--synthetic biology--took center stage as a celebrated scientist from the Massachusetts Institute of Technology (MIT) recently spoke at the headquarters of the Office of Naval Research (ONR).

The magic of microbes: ONR engineers innovative research in synthetic biology

Arlington, VA | Posted on February 19th, 2016

As part of a Distinguished Lecture Series celebrating ONR's 70th anniversary, world-class scientists, researchers and experts from diverse fields will be speaking at ONR in 2016. Dr. Christopher Voigt, an MIT professor of biological engineering, inaugurated the lecture series with a look at the revolutionary potential of synthetic biology.

Synthetic biology involves creating or re-engineering microbes or other organisms to perform specific tasks like monitoring chemical threats, creating biofuels and even improving the health and physical performance of warfighters. The field was identified by Chief of Naval Research Rear Adm. Mat Winter as a top priority because of its far-ranging and broad-based impact on warfighter performance and fleet capabilities.

"ONR first realized the promise of this field over a decade ago to provide future naval forces with new, innovative approaches for threat detection, environmental sensing and enhancement of warfighter health and performance," said Winter. "This platform could define the 21st century--impacting health, the environment and military capabilities."

An ONR-supported performer since 2006, Voigt used concepts and techniques from electrical engineering to manipulate and program a cell's circuitry. With these tools, scientists can engineer bacteria like Escherichia coli to carry out functions such as detecting specific light wavelengths or toxic chemicals.

"Dr. Voigt was among the first to say electrical engineering principles could be useful in synthetic biology," said Dr. Linda Chrisey, a program officer in ONR's Warfighter Performance Department. "The programming language he helped develop allows you to program a cell's circuitry much like you would a computer or robot."

That partnership paid off for ONR, which has since worked with university researchers like Voigt to unearth ways to use the smallest units of life to help Sailors and Marines execute their mission. Research areas include:

Gut microbiology: This area focuses on how gut microbes respond to stressors common to warfighters--changes in diet, fearful situations, sleep loss or disrupted circadian rhythms from living in submarines. Rice University professor Dr. Jeff Tabor was featured in a recent Scientific American article for his ONR-sponsored work in the field.
Threat detection: This involves designing highly sensitive microbes (which could be placed on a silicon chip and attached to unmanned vehicles) that could potentially sense the presence of pollutants, toxic chemicals or explosives like trinitrotoluene (TNT). Recent successes include creating a "smart" plant that turns white when it detects TNT.
Biofuels: Specially engineered microbes with carbon dioxide-based metabolisms can use electrical currents to produce butanol, an alternative fuel. This same process might be able to make certain types of medicines or foods in remote locations.
"Right now, the research into synthetic biology is very basic and still in its early stages," said Chrisey. "However, the future implications could be huge. Using cells to sense and process information would allow the Navy to reduce the size and weight of its current systems and make them more energy efficient.

"We also hope to use synthetic biology to enhance warfighter performance," she continued, "by reducing susceptibility to stressors such as jet lag, noise and changes in altitude and temperature--by using the microbes that are naturally inside all of us."

####

For more information, please click here

Contacts:
Bob Freeman

703-696-5031

Copyright © Office of Naval Research (ONR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Synthetic Biology

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i December 8th, 2023

The medicine of the future could be artificial life forms October 6th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project