Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UTA researchers devise more efficient materials for solar fuel cells

Dr. Krishnan Rajeshwar, is UTA distinguished professor of chemistry and biochemistry and co-founder of the University's Center of Renewable Energy, Science and Technology.
CREDIT: UTA
Dr. Krishnan Rajeshwar, is UTA distinguished professor of chemistry and biochemistry and co-founder of the University's Center of Renewable Energy, Science and Technology.

CREDIT: UTA

Abstract:
University of Texas at Arlington chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into useable fuels like methanol and hydrogen gas. These "green fuels" can be used to power cars, home appliances or even to store energy in batteries.

UTA researchers devise more efficient materials for solar fuel cells

Arlington, TX | Posted on February 16th, 2016

"Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research," said Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-founder of the University's Center of Renewable Energy, Science and Technology.

"Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable," he added.

The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process.

Morteza Khaledi, dean of the UTA College of Science, said Rajeshwar's work is representative of the University's commitment to addressing critical issues with global environmental impact under the Strategic Plan 2020.

"Dr. Rajeshwar's ongoing, global leadership in research focused on solar fuel generation forms part of UTA's increasing focus on renewable and sustainable energy," Khaledi said. "Creating inexpensive ways to generate fuel from an unwanted gas like carbon dioxide would be an enormous step forward for us all."

For the solar fuel cells project, Rajeshwar worked with Csaba Janáky, an assistant chemistry professor at the University of Szeged in Hungary and Janáky's master's student Egon Kecsenovity. Janaky served as a UTA Marie Curie Fellow from 2011 to 2013.

The findings are the subject of a Feb. 15 minireview, "Electrodeposition of Inorganic Oxide/Nanocarbon Composites: Opportunities and Challenges," published in ChemElectroChem Europe and a companion article in the Journal of Materials Chemistry A on "Decoration of ultra long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for photoelectrochemical CO2 reduction."

"The performance of our hybrid has proved far superior to the properties of the individual materials," Rajeshwar said. "These new hybrid films demonstrate five-fold higher electrical conductivity compared to their copper oxide counterparts, and generate a three-fold increase in the photocurrents needed for the reduction process."

The new material also demonstrates much greater stability during long-term photoelectrolysis than pure copper oxide, which corrodes over time, forming metallic copper.

The research involved developing a multi-step electrodeposition process to ensure that a homogeneous coating of copper oxide nanoparticles were deposited on the carbon nanotube networks. By varying the thickness of the carbon nanotube film and the amount of electrodeposited copper oxide, the researchers were able to optimize the efficiency of this new hybrid material.

Rajeshwar also is working with Brian Dennis, a UTA associate professor of mechanical and aerospace engineering, and Norma Tacconi, a research associate professor of chemistry and biochemistry, on a project with NASA to develop improved methods for oxygen recovery and reuse aboard human spacecraft.

The team is designing, building and demonstrating a "microfluidic electrochemical reactor" to recover oxygen from carbon dioxide extracted from cabin air. The prototype will be built over the next months at the Center for Renewable Energy Science and Technology at UTA.

Rajeshwar joined the College of Science in 1983, is a charter member of the UTA Academy of Distinguished Scholars and senior vice president of The Electrochemical Society, an organization representing the nation's premier researchers who are dedicated the advancing solid state, electrochemical science and technology.

He is an expert in photoelectrochemistry, nanocomposites, electrochemistry and conducting polymers, and has received numerous awards, including the Wilfred T. Doherty Award from the American Chemical Society and the Energy Technology Division Research Award of the Electrochemical Society.

Rajeshwar earned his Ph.D. in chemistry from the Indian Institute of Science in Bangalore, India, and completed his post-doctoral training in Colorado State University.

####

About University of Texas at Arlington
The University of Texas at Arlington is a Carnegie "highest research activity" institution of more than 50,000 students in campus-based and online degree programs and is the second-largest institution in The University of Texas System. The Chronicle of Higher Education ranked UTA as one of the 20 fastest-growing public research universities in the nation in 2014. U.S. News & World Report ranks UTA fifth in the nation for undergraduate diversity. The University is a Hispanic-Serving Institution and is ranked as the top four-year college in Texas for veterans on Military Times' 2016 Best for Vets list. Visit www.uta.edu to learn more, and find UTA rankings and recognition at www.uta.edu/uta/about/rankings.php.

For more information, please click here

Contacts:
Louisa Kellie

817-524-8926

Copyright © University of Texas at Arlington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project