Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Light used to measure the 'big stretch' in spider silk proteins

Public Domain, https://pixabay.com/en/spider-web-spider-pattern-morning-920702/
Public Domain, https://pixabay.com/en/spider-web-spider-pattern-morning-920702/

Abstract:
While working to improve a tool that measures the pushes and pulls sensed by proteins in living cells, biophysicists at Johns Hopkins say they've discovered one reason spiders' silk is so elastic: Pieces of the silk's protein threads act like supersprings, stretching to five times their initial length. The investigators say the tool will shed light on many biological events, including the shifting forces between cells during cancer metastasis.

Light used to measure the 'big stretch' in spider silk proteins

Baltimore, MD | Posted on February 15th, 2016

"All other known springs, biological and nonbiological, lengthen in a way that is directly proportional to the force applied to them only until they have been stretched to about 20 percent of their original length," notes Taekjip Ha, Ph.D., the study's lead researcher. "At that point, you have to apply more and more force to stretch them the same distance as before. But the piece of the spider silk protein we focused on continues to stretch in direct proportion to the force applied until it reaches its maximal stretch of 500 percent."

Details of the research were published online in the journal Nano Letters on Feb. 5.

Ha, a Bloomberg Distinguished Professor of biophysics and biophysical chemistry at the Johns Hopkins University School of Medicine, says the new discovery came during follow-up to research he and his team, then at the University of Illinois at Urbana-Champaign, described in the journal Nature in 2010, work done in collaboration with cell biologists led by Martin Schwartz, then at the University of Virginia.

The Virginia team set up those experiments by inserting a repeating amino acid sequence -- taken from the spider silk protein known as flagelliform -- into a human protein called vinculin. Vinculin is responsible for internalizing forces outside a cell by bridging the cellular membrane and the actin network within the cell, making it an important mechanical communicator within the cell.

The scientists also flanked the flagelliform insert in vinculin with two fluorescent proteins to light up and "report" what was going on through fluorescence resonance energy transfer, or FRET. FRET occurs when one fluorescent molecule is close enough to another that it activates the second. So, when vinculin was relaxed within a cell, it "glowed" yellow, the color of the second fluorescent protein being activated by the first. As vinculin stretched, it began to glow blue -- the color of the first fluorescent protein -- because the lengthening distance between the two made FRET activation of the yellow protein impossible.

Using regular fluorescence microscopy, the scientists were able to watch the forces acting on vinculin in live cells in real time. But an issue remained: how to translate the changing colors into measurements of force "sensed" by vinculin.

That's where his team came in, says Ha. The researchers attached one end of modified vinculin to a glass plate and the other to a tether made of DNA with a small plastic bead at the end. They then pulled on the bead with what Ha describes as "chopsticks made of light," focusing a beam of light on a tiny spot nearby and generating an attractive force that pulled the bead toward the light source. That way, Ha says, his investigators could link the amount of FRET with the amount of force on vinculin, allowing them to measure the dynamic forces acting on proteins in live cells just by imaging them.

In that earlier study, the team inserted 40 flagelliform amino acids into vinculin, composed of eight repeats of the amino acid sequence GPGGA. In this new study, the scientists wanted to learn more about the flagelliform tool by varying its length, so they created inserts of five and 10 repeats to test alongside the original insert of eight. What they found is that the shortest insert was the most responsive to the widest range of forces, responding with linear increases in length to forces from 1 to 10 piconewtons. (Ha says that 1 piconewton is approximately the weight of a bacterium.)

The team wasn't expecting the spider silk inserts to show such linear behavior because, according to Ha, they don't form well-defined, three-dimensional structures. "Usually, unstructured proteins show disorderly, nonlinear behavior when we pull on them," says Ha. "The fact that these don't act that way means that they will be really useful tools for studying protein mechanics because their behavior is easy to understand and predict."

Already, Ha says, the flagelliform insert of eight repeats from the previous research has been used to study many biological phenomena, including the shifting forces between cells during cancer metastasis and the pushing and pulling of cells during the development of simple, multicelled organisms, like worms.

"Tension is important for many activities inside cells," says Ha. "Cells sense mechanical forces in their environments and change their behaviors and functions in response. Now we have a way to watch and understand these forces and how they are transmitted at a molecular level in living cells."

###

Other authors of the report include Michael Brenner and Ruobo Zhou of the University of Illinois at Urbana-Champaign; Daniel Conway of the University of Virginia; and Luca Lanzano and Enrico Gratton of the University of California, Irvine.

This work was supported by grants from the National Science Foundation Physics Frontier Centers (PHY 1430124), the National Institute of General Medical Sciences (GM065367, GM098412, GM103540, GM076516), the National Institute of Diabetes and Digestive and Kidney Diseases (DK066029), and the American Heart Association.

####

For more information, please click here

Contacts:
Catherine Gara
443-287-2251


Shawna Williams
410-955-8236

Copyright © Johns Hopkins Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project