Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > FAU researchers show how mother-of-pearl is formed from nanoparticles

Abstract:
Materials scientists at FAU have shown for the first time that the mother-of-pearl in clam shells does not form in a crystallisation process but is a result of the aggregation of nanoparticles within an organic matrix. This could lead to a better understanding of the structure of biomaterials which may be useful in the development of new high-performance ceramics. The findings of the research group led by Prof. Dr. Stephan E. Wolf have been published in the latest issue of the renowned journal Nature Communications (doi: 10.1038/ncomms10097).

FAU researchers show how mother-of-pearl is formed from nanoparticles

Erlangen, Germany | Posted on January 19th, 2016

Prof. Wolf and his team used a special technique to investigate the structure of mother-of-pearl. Using a diamond wire saw, they cut a 60-centimetre wedge out of the shell of a large Pinna nobilis - a type of clam found in the Mediterranean - which they then polished using a novel method before examining it under a scanning transmission electron microscope. 'We borrowed the wedge-polishing technique from the semiconductor industry,' Stephan Wolf explains. 'This method makes it possible to look at extremely large areas, something that was very difficult to do before.'

Traditional model disproved

The high-resolution images from the scanning transmission electron microscope showed that the structure of the shell is very heterogeneous - from irregular calcite prisms on the outside to the smooth mother-of-pearl on the inside of the shell, with an organic layer in the middle. 'The transition from the organic to the mother-of-pearl layer is particularly interesting,' Stephan Wolf says. 'Here we find the first nanoparticles of between 50 and 80 nanometres in size that aggregate more and more as they get closer to the inside of the shell and merge to form mother-of-pearl platelets, finally forming the highly structured mother-of-pearl that we all know.'

Prefabrication in nature

With their findings the Erlangen-based researchers have shown for the first time that mother-of-pearl does not form through a crystallisation process in which atoms or ions in a saturated solution are deposited successively - as previously thought - but instead forms through the aggregation of prefabricated nanocrystals. 'If we compare the growth process of mother-of-pearl to building a house, the clam uses a kind of prefabricated construction method, while crystallisation is like building a wall out of individual bricks,' Stephan Wolf explains.

An incredibly strong structure

The calcium carbonate nanoparticles group together to form crystalline aragonite platelets. These are the building blocks for mother-of-pearl and gives it its typical shine. 'Individual platelets that are around 350 to 500 nanometres thick are embedded in an organic layer that holds them together like cement,' Stephan Wolf says. 'The fact that this layer structure is made up of smaller particles that also include organic material has a significant influence on the mechanical properties of the clam shell. A comparable crystalline material made of individual ions would break much more quickly.'

A template for new ceramics

Materials scientists at FAU are currently working on reproducing the crystallisation of nanoparticles in the laboratory with the aim of developing high-performance ceramics using templates found in nature. 'We are looking at not only the form and resistance of the materials but also their energetic advantages,' Stephan Wolf emphasises. 'After all, mother-of-pearl doesn't form in an oven, it forms in cold sea water.'

####

For more information, please click here

Contacts:
Stephan E. Wolf

49-913-185-27565

Copyright © Friedrich-Alexander-Universität

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project