Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Recycling light: How photonics can reshape the spectrum of light, and rehabilitate Edison's light bulb along the way

A nanophotonic incandescent light bulb demonstrates the ability to tailor light radiated by a hot object.
CREDIT: Ognjen Ilic
A nanophotonic incandescent light bulb demonstrates the ability to tailor light radiated by a hot object.

CREDIT: Ognjen Ilic

Abstract:
Humanity started recycling relatively early in its evolution: there are proofs that trash recycling was taking place as early as in the 500 BC. What about light recycling? Consider light bulbs: more than one hundred and thirty years ago Thomas Edison patented the first commercially viable incandescent light bulb, so that "none but the extravagant" would ever "burn tallow candles", paving the way for more than a century of incandescent lighting. In fact, emergence of electric lighting was the main motivating factor for deployment of electricity into every home in the world. The incandescent bulb is an example of a high temperature thermal emitter. It is very useful, but only a small fraction of the emitted light (and therefore energy) is used: most of the light is emitted in the infrared, invisible to the human eye, and in this context wasted.

Recycling light: How photonics can reshape the spectrum of light, and rehabilitate Edison's light bulb along the way

Cambridge, MA | Posted on January 12th, 2016

Now, in a study published in Nature Nanotechnology on January 11th 2016 (online), a team of MIT researchers describes another way to recycle light emitted at unwanted infrared wavelengths while optimizing the emission at useful visible wavelengths. The paper was co- authored by MIT scientists: postdoc Ognjen Ilic, principal research scientist Ivan Celanovic, professors Gang Chen, John Joannopoulos, Peter Bermel (now at Purdue), and Marin Soljacic. While as a proof-of-concept the research group built a more energy-efficient incandescent light bulb, the same approach could also be used to improve the performance of other hot thermal emitters, including thermo-photovoltaic devices.

"For a thermal emitter at moderate temperatures one usually nano-patterns its surface to alter the emission," says Ilic, the lead author of the study. "At high temperatures" - a light bulb filament reaches 3000K! - "such nanostructures deteriorate and it is impossible to alter the emission spectrum by having a nanostructure directly on the surface of the emitter." The team solved the problem by surrounding the hot object with special nanophotonic structures that spectrally filter the emitted light, meaning that they let the light reflect or pass through based on its color (i.e. its wavelength). Because the filters are not in direct physical contact with the emitter, temperatures can be very high.

To showcase this idea, the team picked one of the highest temperature thermal emitters available - an incandescent light bulb. The authors designed nanofilters to recycle the infrared light, while allowing the visible light to go through. "The key advance was to design a photonic structure that transmits visible light and reflects infrared light for a very wide range of angles," explains Ilic. "Conventional photonic filters usually operate for a single incidence angle. The challenge for us was to extend the desired optical properties across all directions," a feat the authors achieved using special numerical optimization techniques.

However, for this scheme to work, the authors had to redesign the incandescent filament from scratch. "In a regular light bulb, the filament is a long and curly piece of tungsten wire. Here, the filament is laser-machined out of a flat sheet of tungsten: it is completely planar," says Bermel. A planar filament has a large area, and is therefore very efficient in re-absorbing the light that was reflected by the filter. In describing how the new device differs from previously suggested concepts, Soljacic, the project lead, emphasizes that "it is the combination of the exceptional properties of the filter and the shape of the filament that enabled substantial recycling of unwanted radiated light."

In the new-concept light bulb prototype built by the authors, the efficiency approaches some fluorescent and LED bulbs. Nonetheless, the theoretical model predicts plenty of room for improvement. "This experimental device is a proof-of-concept, at the low end of performance that could be ultimately achieved by this approach," argues Celanovic. There are other advantages of this approach: "An important feature is that our demonstrated device achieves near-ideal rendering of colors," notes Ilic, referring to the requirement of light sources to faithfully reproduce surrounding colors. That is precisely the reason why incandescent lights remained dominant for so long: their warm light has remained preferable to drab fluorescent lighting for decades.

Some practical questions need to be addressed before this technology can be widely adopted. "We will work closely with our mechanical engineering colleagues at MIT to try to tackle the issues of thermal stability and long-lifetime," says Soljačić. The authors are particularly excited about the potential for producing these devices cheaply. "The materials we need are abundant and inexpensive," Joannopoulos notes, "and the filters themselves--consisting of stacks of commonly deposited materials--are amenable to large-scale deposition."

Chen comments further: "The lighting potential of this technology is exciting, but the same approach could also be used to improve the performance of energy conversion schemes such as thermo-photovoltaics." In a thermo-photovoltaic device, external heat causes the material to glow, emitting light that is converted into an electric current by an absorbing photovoltaic element.

The last point captures the main motivation behind the work. "Light radiated from a hot object can be quite useful, whether that object is an incandescent filament or the Sun," Ilic says. At its core, this work is about recycling thermal light for a specific application; "a 3000-degree filament is one of the hottest and the most challenging sources to work with," Ilic continues. "It's also what makes it a crucial test of our approach."

###

The work was supported by the Solid-State Solar Thermal Energy Conversion Center and the U.S. Department of Energy, as well as by the Army Research Office, through the Institute for Soldier Nanotechnologies.

Written by Paola Rebusco

####

For more information, please click here

Contacts:
Ognjen Ilic


Marin Soljacic

Copyright © Massachusetts Institute of Technology, Institute for Soldier

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication URL:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project