Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers' metallic glue may stick it to soldering and welding: Northeastern's Hanchen Huang and colleagues, experts in nanotechnology, have developed a glue that binds metal to metal to glass to you-name-it, sets at room temperature, and requires little pressure to seal

Hanchen Huang and colleagues, experts in nanotechnology, have developed a glue that binds metal to metal to glass to you-name-it, sets at room temperature, and requires little pressure to seal.
CREDIT: Northeastern University
Hanchen Huang and colleagues, experts in nanotechnology, have developed a glue that binds metal to metal to glass to you-name-it, sets at room temperature, and requires little pressure to seal.

CREDIT: Northeastern University

Abstract:
Per­haps no startup was launched for a more intriguing reason than that of Northeastern's Hanchen Huang. From the com­pany website:

"MesoGlue was founded by Huang and two of his PhD stu­dents: They had a dream of a better way of sticking things together."

Researchers' metallic glue may stick it to soldering and welding: Northeastern's Hanchen Huang and colleagues, experts in nanotechnology, have developed a glue that binds metal to metal to glass to you-name-it, sets at room temperature, and requires little pressure to seal

Boston, MA | Posted on January 10th, 2016

Those "things" are every­thing from a computer's cen­tral pro­cessing unit and a printed cir­cuit board to the glass and metal fil­a­ment in a light bulb. The "way" of attaching them is, aston­ish­ingly, a glue made out of metal that sets at room tem­per­a­ture and requires very little pres­sure to seal. "It's like welding or sol­dering but without the heat," says Huang, who is pro­fessor and chair in the Depart­ment of Mechan­ical and Indus­trial Engineering.

In a new paper, pub­lished in the Jan­uary issue of Advanced Mate­rials & Processes, Huang and col­leagues, including North­eastern doc­toral stu­dent Paul Elliott, describe their latest advances in the glue's devel­op­ment. Our curiosity was piqued: Sol­dering with no heat? We asked Huang to elaborate.

On new devel­op­ments in the com­po­si­tion of the metallic glue:

"Both 'metal' and 'glue' are familiar terms to most people, but their com­bi­na­tion is new and made pos­sible by unique prop­er­ties of metallic nanorods--infinitesimally small rods with metal cores that we have coated with the ele­ment indium on one side and galium on the other. These coated rods are arranged along a sub­strate like angled teeth on a comb: There is a bottom 'comb' and a top 'comb.' We then inter­lace the 'teeth.' When indium and galium touch each other, they form a liquid. The metal core of the rods acts to turn that liquid into a solid. The resulting glue pro­vides the strength and thermal/?electrical con­duc­tance of a metal bond. We recently received a new pro­vi­sional patent for this devel­op­ment through North­eastern University."

On the spe­cial prop­er­ties of the metallic glue:

"The stan­dard polymer glue does not func­tion at high tem­per­a­tures or high pres­sures, but the metallic glue does. The stan­dard glue is not a great con­ductor of heat and/?or elec­tricity, but the metallic glue is. Fur­ther­more, the stan­dard glue is not very resis­tant to air or gas leaks, but the metallic glue is.

"'Hot' processes like sol­dering and welding can result in metallic con­nec­tions that are sim­ilar to those pro­duced with the metallic glue, but they cost much more. In addi­tion, the high tem­per­a­ture nec­es­sary for these processes has dele­te­rious effects on neigh­boring com­po­nents, such as junc­tions in semi­con­ductor devices. Such effects can speed up failure and not only increase cost but also prove dan­gerous to users."

What are some appli­ca­tions of the technology?

"The metallic glue has mul­tiple appli­ca­tions, many of them in the elec­tronics industry. As a heat con­ductor, it may replace the thermal grease cur­rently being used, and as an elec­trical con­ductor, it may replace today's sol­ders. Par­tic­ular prod­ucts include solar cells, pipe fit­tings, and com­po­nents for com­puters and mobile devices."

####

For more information, please click here

Contacts:
Casey Bayer

617-373-2592

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

Hardware

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Materials/Metamaterials

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Energy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Solar/Photovoltaic

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project