Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New ceramic firefighting foam becomes stronger when temperature increases

This is an electronic microscope image of hybrid silica foam.
CREDIT: ITMO University
This is an electronic microscope image of hybrid silica foam.

CREDIT: ITMO University

Abstract:
A team of chemists from ITMO University, in collaboration with research company SOPOT, has developed a novel type of firefighting foam based on inorganic silica nanoparticles. The new foam beats existing analogues in fire extinguishing capacity, thermal and mechanical stability and biocompatibility. The results of the study were published in ACS Advanced Materials & Interfaces.

New ceramic firefighting foam becomes stronger when temperature increases

Saint Petersburg, Russia | Posted on December 14th, 2015

Fighting large-scale fires usually involves firefighting foams based on synthetic substances, such as prefluorinated surfactants, that, despite their effectiveness, are extremely toxic for living organisms. Complete biodegradation of such foams can last for more than 200 years, with residues quickly penetrating deep into soil and surface water. This leads to the the accumulation of toxic elements in living organisms, such as plants, animals and men. Many countries have declined the use of such fire extinguishing agents or opted for reducing the production of such substances despite the absence of any decent alternatives.

A group of scientists from the International Laboratory of Advanced Materials and Technologies (SCAMT) at ITMO University in Saint Petersburg and research company SOPOT devised a foam, which was awarded full biodegradability and whose fire extinguishing capacity is higher than that of any existing analogue currently in use by fire fighters. After the fire is extinguished, the substance actively absorbs water, softens and falls apart into bioinert silica particles. And even when the foam accidentally enters living organisms, it does not not pose any danger to them.

"Our foam is based on silica nanoparticles, which create a polymer network when exposed to air," says Alexander Vinogradov, deputy head of the SCAMT laboratory. "Such a network embraces and adheres to the burning object and momentarily cools it down. At the same time, the foam itself hardens. The inorganic origin of this polymer network allows it to resist temperatures above 1000 degrees Celsius, which ensures gigantic stability from the aggressive environment in the midst of a raging fire."

"Most existing foams are made of organic materials and quickly deteriorate when temperature approaches 300 degrees Celsius. In our case, the foam creates a hard frame that not only puts out the fire, but also protects the object from re-ignition. With ordinary foams, re-ignition occurs within seconds after flame is applied to the object again."

The scientists conducted a series of large-scale experiments of the hardening foam, including the imitation of an actual forest fire. The foam was used to create a flame retardant belt that was supposed stop the spread of the fire. The tests demonstrated that the foam easily localizes the forest fire seat and can stay active during the whole fire season.

"The flame retardant belt made of our foam will prevent the spread of any forest fire, regardless of its strength and level of complexity," says Gennady Kuprin, head of SOPOT. "We can localize the fire and be sure that the adjacent territories will be safe. This is crucial to organize evacuation works during forest fires, where 9 of 10 people die in our and other countries."

####

For more information, please click here

Contacts:
Dmitry Malkov

895-337-75508

Copyright © ITMO University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project