Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Battery mystery solved: Microscopy answers longstanding questions about lithium-rich transition metal oxides: Berkeley Lab scientists unravel structural ambiguities in lithium-rich transition metal oxides

On the right the cube represents the structure of lithium- and manganese- rich transition metal oxides. The models on the left show the structure from three different directions, which correspond to the STEM images of the cube.
CREDIT: Lawrence Berkeley National Laboratory
On the right the cube represents the structure of lithium- and manganese- rich transition metal oxides. The models on the left show the structure from three different directions, which correspond to the STEM images of the cube.

CREDIT: Lawrence Berkeley National Laboratory

Abstract:
Using complementary microscopy and spectroscopy techniques, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) say they have solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered.

Battery mystery solved: Microscopy answers longstanding questions about lithium-rich transition metal oxides: Berkeley Lab scientists unravel structural ambiguities in lithium-rich transition metal oxides

Berkeley, CA | Posted on October 29th, 2015

Researchers have been divided into three schools of thought on the material's structure, but a team led by Alpesh Khushalchand Shukla and Colin Ophus spent nearly four years analyzing the material and concluded that the least popular theory is in fact the correct one. Their results were published online in the journal Nature Communications in a paper titled, "Unraveling structural ambiguities in lithium- and manganese- rich transition metal oxides." Other co-authors were Berkeley Lab scientists Guoying Chen and Hugues Duncan and SuperSTEM scientists Quentin Ramasse and Fredrik Hage.

This material is important because the battery capacity can potentially be doubled compared to the most commonly used Li-ion batteries today due to the extra lithium in the structure. "However, it doesn't come without problems, such as voltage fade, capacity fade, and DC resistance rise," said Shukla. "It is immensely important that we clearly understand the bulk and surface structure of the pristine material. We can't solve the problem unless we know the problem."

A viable battery with a marked increase in storage capacity would not only shake up the cell phone and laptop markets, it would also transform the market for electric vehicles (EVs). "The problem with the current lithium-ion batteries found in laptops and EVs now is that they have been pushed almost as far as they can go," said Ophus. "If we're going to ever double capacity, we need new chemistries."

Using state-of-the-art electron microscopy techniques at the National Center for Electron Microscopy (NCEM) at Berkeley Lab's Molecular Foundry and at SuperSTEM in Daresbury, United Kingdom, the researchers imaged the material at atomic resolution. Because previous studies have been ambiguous about the structure, the researchers minimized ambiguity by looking at the material from different directions, or zone axes. "Misinterpretations from electron microscopy data are possible because individual two-dimensional projections do not give you the three-dimensional information needed to solve a structure," Shukla said. "So you need to look at the sample in as many directions as you can."

Scientists have been divided on whether the material structure is single trigonal phase, double phase, or defected single monoclinic phase. The "phase" of a material refers to the arrangement of the atoms with respect to each other; Ophus, a Project Scientist at the Molecular Foundry, explains how easy it is for researchers to reach different conclusions: "The two-phase and one-phase model are very closely related. It's not like comparing an apple to an orange--it's more like comparing an orange and a grapefruit from very far away. It's hard to tell the difference between the two."

In addition to viewing the material at atomic resolution along multiple zone axes, the researchers made another important decision, that is, to view entire particles rather than just a subsection. "Imaging with very high fields of view was also critical in solving the structure," Shukla said. "If you just look at one small part you can't say that the whole particle has that structure."

Putting the evidence together, Shukla and Ophus are fairly convinced that the material is indeed defected single phase. "Our paper gives very strong support for the defected single-phase monoclinic model and rules out the two-phase model, at least in the range of compositions used in our study," said Ophus, whose expertise is in understanding structure using a combination of computational methods and experimental results.

Added Ramasse, director of SuperSTEM: "We need to know what goes on at the atomic scale in order to understand the macroscopic behavior of new emerging materials, and the advanced electron microscopes available at national facilities such as SuperSTEM or NCEM are essential in making sure their potential is fully realized."

In addition to solving the structure of the bulk material, which has been studied by other research groups, they also solved the surface structure, which is different from the bulk and consists of just a few layers of atoms on select crystallographic facets. "The intercalation of lithium starts at the surface, so understanding the surface of the pristine material is very important," Shukla said.

On top of the STEM (scanning transmission electron microscopy) imaging that they used for the bulk, they had to use additional techniques to solve the surface, including EELS (electron energy loss spectroscopy) and XEDS (X-ray energy dispersive spectroscopy). "We show for the first time which surface structure occurs, how thick it is, how it's oriented in relation to the bulk, and in particular on what facets the surface phase does and doesn't exist," Ophus said.

An important part of the study was the quantity and quality of the samples studied. They started with lab-made samples, prepared by Duncan, a postdoc in the lab of Chen, a chemist whose research focuses on lithium-ion batteries. They used a molten-salt method that produces high-quality discrete primary particles that are impurity-free, making them ideal candidates for performing fundamental characterization. Taking a conservative approach, the researchers also decided to procure and analyze two commercial samples from two different companies.

"We could have finished the paper a year earlier, but because there was so much controversy we wanted to make sure we didn't leave any stone unturned," said Shukla who was a scientist with Berkeley Lab's Energy Storage and Distributed Resources Division at the time he did this work but has since become a consulting scientist at Envia Systems while continuing to be affiliated with Berkeley Lab as a user of the Molecular Foundry.

In the end, it took nearly four years to complete the research. Ophus calls it a "tour de force of microscopy" because of its thoroughness.

###

The work was funded by the Vehicle Technologies Office under the U.S. Department of Energy. The Molecular Foundry is a DOE Office of Science User Facility.

####

About DOE/Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Julie Chao

510-486-6491

Copyright © DOE/Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project