Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Using magnetic permeability to store information

Abstract:
Scientists have made promising steps in developing a new magnetic memory technology, which is far less susceptible to corruption by magnetic fields or thermal exposure than conventional memory.

Using magnetic permeability to store information

London, UK | Posted on September 12th, 2015

The findings, which report the use of magnetic permeability - how easily a magnetic field will magnetize a material - are published today, Friday 11th September, in the Journal of Physics D: Applied Physics.

These findings open up a new approach to a variety of applications from high-density radiation hard memory suitable for space travel to more secure ID cards.

In conventional magnetic memory, such as that in a computer, or the magnetic strip of a credit card, the memory is read by 'reading' the magnetization of the memory bit. As this magnetization is written using a magnetic field, it can also be erased by a magnetic field.

Magnetic permeability - an intrinsic property of 'soft' ferromagnets - is not changed by exposure to a magnetic field, and therefore information stored by programming changes in the magnetic permeability of each memory bit will not be erased by exposure to magnetic fields.

"It was a big step just coming up with the idea of using magnetic permeability to store information, and coming up with a practical way of getting the memory near the sensor so that it can be read" explains Dr Alan Edelstein, an author on the paper. "I was surprised and pleased that we could make this approach work."

The technique used thermal heating with a laser to crystallize amorphous regions of ferromagnets. As the crystalline areas have a lower permeability than the amorphous areas, information can be read from the memory by reading the changes in a probe magnetic field.

With credit cards, RF chips have offered a more stable form of memory, but these can be read by a passer-by using an RF reader. As the probe magnetic field needs to be in close vicinity to the memory, this technique offers a more secure technology.

One of the issues with traditional magnetic memory is that capacity is limited by the superparamagnetic limit - essentially the size of the particles used in the memory. By using the magnetic permeability an intrinsic property of the material, microstructure and composition of the material become the limiting factors.

"At present we have low density sized bits" continues Edelstein. "But we have the potential to get much higher since we are not limited by the superparamagnetic limit - there are difficult technological limitations to overcome first though."

The paper also reports that the memory is less prone to degradation when exposed to gamma radiation - something that is important for memory used for space travel, as the memory would have to feature less shielding, thus reducing its weight.

The researchers are now working on a technique to make the memory re-writable. "We've demonstrated the ability to rewrite bits for a read/write memory, and hope to publish the results soon." concludes Edelstein.

####

About Institute of Physics
The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

Visit us at www.iop.org or follow us on Twitter @physicsnews.

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.

Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.

IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.

Go to ioppublishing.org or follow us @IOPPublishing.

About Journal of Physics D: Applied Physics

Journal of Physics D: Applied Physics is a major international journal reporting significant new results in all aspects of applied physics research. We welcome experimental, computational (including simulation and modelling) and theoretical studies of applied physics, and also studies in physics-related areas of biomedical and life sciences. The work must fall into one of the five sections below. If the work overlaps two or more journal sections then it can be submitted as an interdisciplinary applied physics paper. All work published in Journal of Physics D: Applied Physics must discuss applications or potential applications of the research presented.

For more information, please click here

Contacts:
Steve Pritchard

44-117-930-1032

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project