Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CAMECA Helps US Navy LEAP Forward in Materials Design: CAMECA Delivers Local Electrode Atom Probe (LEAP) To US Naval Research Laboratory for Advanced Materials Development

The US Naval Research Laboratory (NRL) uses the CAMECA Local Electrode Atom Probe (LEAP) to provide nanoscale surface, bulk and interfacial materials analysis. Here a researcher loads a carousel of specimens into the LEAP for analysis.
The US Naval Research Laboratory (NRL) uses the CAMECA Local Electrode Atom Probe (LEAP) to provide nanoscale surface, bulk and interfacial materials analysis. Here a researcher loads a carousel of specimens into the LEAP for analysis.

Abstract:
The US Naval Research Laboratory (NRL) has taken delivery of the US Department of Defense’s first Local Electrode Atom Probe (LEAP) microscope. The high- performance atom probe from CAMECA, a unit of AMETEK Materials Analysis, is used in advanced materials analysis to provide precise atom-by-atom identification, 3-D spatial positioning, and accurate atomic-scale reconstruction of a material’s microstructure. Since their development in the 1960s, atom probes have contributed to major advances in materials science.

CAMECA Helps US Navy LEAP Forward in Materials Design: CAMECA Delivers Local Electrode Atom Probe (LEAP) To US Naval Research Laboratory for Advanced Materials Development

Washington, DC | Posted on September 11th, 2015

“The exact knowledge of where individual atoms are in a material is of tremendous benefit when engineering new materials,” notes Keith Knipling of the NRL Materials Science and Technology Division. “We expect the LEAP to greatly enhance our ability to develop new materials, including the next generation of structural alloys for stronger ship hulls and more advanced turbine engines, new electronic materials for tomorrow’s faster integrated circuits, and advanced solar cell and battery materials with improved power and energy efficiency.”

LEAP operates on the principle of field evaporation, whereby a strong electric field applied to a specimen is sufficient to cause removal of atoms by ionization. Proprietary single-particle detection enables isotopic identification by time-of-flight mass spectrometry and positional determination.

CAMECA’s LEAP system offers high data quality as well as improved ease of use via prefabricated MicrotipTM specimen carriers, which permit multiple samples to be prepared, mounted and loaded into the instrument for maximum efficiency for multi-experiment scenarios.

Atom evaporation is triggered either by a voltage or laser pulse applied to the sample. The resulting ions are accelerated away from the sample and identified. By repeating the sequence thousands of times per second, atoms are progressively removed from the sample tip and a 3D atomic-scale image of the material can be reconstructed.

“Mapping the location of each chemical species in a material microstructure enables an unprecedented understanding of the true effects of alloying and material synthesis, which is essentially for truly optimizing the properties of any material. We expect LEAP to deliver new atomic-scale perspectives and insights into a wide range of materials science investigations.”

Researchers at NRL, for example, are developing semiconductor materials with very dilute levels of added “dopant” atoms for the purpose of tailoring their electrical properties. These doped materials form the building blocks of nearly all semiconductor electronic devices, such as diodes, transistors, solar cells, light-emitting diodes and integrated circuits.

“Most analytical technical are incapable of measuring these low concentration levels, much less where the dopants are segregated within the microstructure. With LEAP, our researchers can now answer those questions,” adds Knipling.

CAMECA pioneered the development of atom probe tomography. Among its most recent advancements is the LEAP 5000, which sets the industry standard in terms of analytical accuracy, sensitivity, and 3D spatial resolution across a wide variety of metals, semiconductors and insulators and achieves an atom-by-atom identification efficiency of 80%.

####

About CAMECA
CAMECA® has more than 60 years of experience in the design, manufacture and servicing of scientific instruments for material micro- and nano-analysis. Since pioneering Electron Probe Microanalysis (EPMA) instrumentation in the 1950s and Secondary Ion Mass Spectrometry (SIMS) in the 1960s, CAMECA has remained an undisputed world leader, while achieving numerous breakthrough innovations in such complementary techniques as Low-energy Electron-induced X-ray Emission Spectrometry (LEXES) and Atom Probe Tomography (APT).

Headquartered near Paris, CAMECA also has a production facility in Madison WI, USA where the LEAP APT is designed and manufactured, further locations in Brazil, China, England, Germany, India, Japan, Korea, and Taiwan. CAMECA is a business unit of the Materials Analysis Division of AMETEK® Inc., a leading global manufacturer of electronic instruments and electromechanical products.

About the US Naval Research Laboratory

The US Naval Laboratory is the US Navy’s full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The laboratory, which has served the US Navy for more than 90 years, continues to meet the complex technological challenges of today’s world. More information is available at www.nrl.navy

For more information, please click here

Contacts:
CAMECA LEAP Technology Ctr
AMETEK Materials Analysis
5500 Nobel Drive
Madison, WI 53711
Phone: +1 608-274-6880

Copyright © CAMECA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project