Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers use laser to levitate, glowing nanodiamonds in vacuum: Work represents first step towards a levitated system combining optical, spin and mechanical degrees of freedom

A nanodiamond containing hundreds of nitrogen vacancies glows while levitated by a laser during an experiment in Nick Vamivakas' lab at the University of Rochester. The team have now continued the research to use nanodiamonds with single vacancies and to do the experiments in vacuum. They report their results in Nature Photonics.
CREDIT: Photo by J. Adam Fenster/University of Rochester.
A nanodiamond containing hundreds of nitrogen vacancies glows while levitated by a laser during an experiment in Nick Vamivakas' lab at the University of Rochester. The team have now continued the research to use nanodiamonds with single vacancies and to do the experiments in vacuum. They report their results in Nature Photonics.

CREDIT: Photo by J. Adam Fenster/University of Rochester.

Abstract:
Researchers have, for the first time, levitated individual nanodiamonds in vacuum. The research team is led by Nick Vamivakas at the University of Rochester who thinks their work will make extremely sensitive instruments for sensing tiny forces and torques possible, as well as a way to physically create larger-scale quantum systems known as macroscopic Schrödinger Cat states.

Researchers use laser to levitate, glowing nanodiamonds in vacuum: Work represents first step towards a levitated system combining optical, spin and mechanical degrees of freedom

Rochester, NY | Posted on September 7th, 2015

While other researchers have trapped other types of nanoparticles in vacuum, those were not optically active. The nanodiamonds, on the other hand, can contain nitrogen-vacancy (NV) centers that emit light and also have a spin quantum number of one. In the paper, published in Nature Photonics, the researchers from Rochester's Institute of Optics explain this is the first step towards creating a "hybrid quantum system." Their system combines the mechanical motion of the nanodiamond with the internal spin of the vacancy and its optical properties to make it particularly promising for a number of applications.

In a previous paper, the researchers had shown that nanodiamonds could be levitated in air using a trapping laser. The new paper now shows this can be done in vacuum, which they say is "a critical advance over previous nanodiamond optical tweezer experiments performed in liquids or at atmospheric pressure."

Nanodiamonds trapped at atmospheric pressure are continuously agitated by collisions with the air molecules around them. Trapping the diamonds in vacuum removes the effect of all these air molecules. "This allows us to exert mechanical control over them," said Levi Neukirch, lead author of the paper and a Ph.D. student in Vamivakas' group at Rochester. "They turn into little harmonic oscillators."

"We can measure the position of the diamond in 3D and we create a feedback signal based on the position and velocity of the nanodiamond," said Neukirch. "This lets us actively damp its motion."

Neukirch said that this is done by changing the trapping potential that the diamond sees. The trapping potential can be illustrated by imagining the diamond sitting at the bottom of a valley. If the diamond moves away from the bottom of the valley, it effectively moves uphill and eventually rolls back to the bottom. The feedback mechanism the researchers have created changes the shape of the optical potential well, so that the hill is steep when the diamond climbs it, but gradual when it rolls back down. Eventually the diamond would just oscillate a tiny amount at the bottom of the valley. This, Neukirch stated, is their long-term goal: to damp the diamond's motion until it is in the ground state of the system, which would make the system behave as a quantum mechanical oscillator.

In their previous experiments the diamond shone brightly because it contained hundreds of vacancies, all which emit light after being excited with a laser. In their recent work they chose diamonds that had few vacancies and were even able to select diamonds with a single vacancy. With a single spin in the NV center, and the system functioning as a quantum mechanical oscillator, the researchers would be able to affect the spin state of the tiny defect inside the nanodiamond by exerting mechanical control on the entire nanodiamond.

For this to be possible, the system has to be in vacuum, at even lower pressures that the researchers were able to achieve. The limiting factor, Neukirch explained, was that the nanodiamonds were destroyed at very low pressures. He believes the nanodiamonds are either melting or sublimating, because at lower pressures there are fewer air molecules to remove the excess internal heat from the diamonds, which is injected by a laser that is used to excite the system as part of the experiment.

In collaboration with a team from Abo Akademi University in Finland, they replaced their bare nanodiamonds with nanodiamonds that are encased in silica shells, to find if these would protect the nanodiamonds. While this did not solve the problem it did make all the nanodiamonds spherical and homogenous, which the researchers think is desirable for future experiments.

To be able to measure and control the system, the researchers use two separate lasers: one to trap the nanodiamond, the other one to excite the NV center. When the defect relaxes from an excited state to a lower energy state it emits a photon. This process is known as photoluminescence. Photoluminescence allows the researchers to understand by the energy of the emitted photon what the energy structure of the system is, as well as exert control and be able to change the energy of the system.

Before the researchers can achieve their goal of being able to cool down the nanodiamonds mechanically into the ground state, they will have to figure out how to stop the nanodiamonds from vanishing in seconds at lower pressures. But the potential for these systems, Neukirch believes, is very exciting.

"We have demonstrated the ability to control the NV center's spin in these levitated nanodiamonds," Neukirch said. He explained that the defect's electrons had to take on specific spin states, two of which are normally "degenerate," meaning in this case that states with spin values of +1 or -1 have the same energy.

"Without applying a magnetic field these two energy levels are the same, but we can separate them with magnetic field, and they react differently to it. If there was an electron in the spin +1 state and you then applied a magnetic field, the whole nanodiamond would feel a push, but if it was in the spin -1 state it would feel a pull," he said. "Because the electron spins are intrinsically quantum mechanical, they can exist in something called superpositions. We can create a state where a single spin is in both the +1 and -1 states simultaneously. If we can mechanically place the nanodiamond in the ground state, this would allow us to both push and pull on the spin, hopefully generating a mechanical superposition of the entire diamond. This is a curious phenomenon that physicists are interested in studying, and it is called a macroscopic Schrödinger Cat state."

Neukirch also said levitating nanodiamonds in vacuum could be used to measure "extremely tiny forces or torques." The nanodiamonds are in effect nano-oscillators, and any force, even if tiny, will move them slightly. Neukirch added that their "setup is capable of detecting these small motions."

Neukirch will be starting as a postdoctoral associate in Vamivakas' group this month, continuing this work with the aim of achieving levitated, optically active nanodiamonds that are not destroyed at low pressures.

###

Eva von Haartman and Jessica M. Rosenholm from the pharmaceutical sciences laboratory at Abo Academy, Finland, collaborated with the Rochester team by providing the silica-encased nanodiamonds.

The work was supported by an award from the Office of Naval Research.

####

For more information, please click here

Contacts:
Leonor Sierra

585-276-6264

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Quantum nanoscience

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project