Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories

Difference in conduction by electrons with opposite spins in ferromagnetic metals can be precisely resolved using terahertz waves.
CREDIT: © MPI-P
Difference in conduction by electrons with opposite spins in ferromagnetic metals can be precisely resolved using terahertz waves.

CREDIT: © MPI-P

Abstract:
Mainz/Aveiro/Bielefeld/Berlin. Modern magnetic memories, such as hard drives installed in almost every computer, can store a very large amount of information thanks to very tiny, nanoscale magnetic sensors used for memory readout. The operation of these magnetic sensors, called the spin-valves, is based on the effect of giant magnetoresistance (GMR), for which its inventors Albert Fert and Peter Gruenberg were awarded a Nobel Prize in Physics in 2007.

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories

Mainz/Aveiro/Bielefeld/Berlin, Germany | Posted on July 6th, 2015

The GMR effect is based on the idea of electrical conduction in ferromagnetic metals, proposed by Sir Nevill F. Mott as early as in 1936. In Mott's picture, the conduction electrons in ferromagnetic metals experience scattering depending on their microscopic magnetic moment - the spin. That is, the electrons with one spin orientation scatter less and are therefore more conductive than the electrons with the opposite spin orientation. This spin-asymmetry in electron conduction is greatly amplified when the thin films of ferromagnetic and nonmagnetic metals are combined together to form a spin-valve in which electrical resistivity becomes very sensitive to the magnetic field, leading to a GMR effect.

Even though the Mott spin-dependent conductivity is at the heart of magnetic memories and many other technologies, its direct observation has been a long time challenge. Indeed the fundamental parameters of Mott conduction - spin-dependent electron scattering time and spin-dependent electron density - can be directly and unambiguously determined only if the conductivity of the metal is measured on the same ultrafast timescale at which the electron scattering occurs, that is sub-100 femtosecond (1 fs = 10-15 s, i.e. one millionth of one billionth of a second). For many decades, such an extremely fast timescale of experimental measurement precluded the observation of magnetotransport in metals on the fundamental level.

In a collaborative work carried out by the research groups at the Max Planck Institute for Polymer Research (MPI-P) and the Johannes Gutenberg University (JGU), with the contribution of Sensitec GmbH and the Fritz Haber Institute of the Max Planck Society, the scientists managed to break the speed barrier for fundamental magnetotransport measurements by using a method called ultrafast terahertz spectroscopy (1 THz = 1012 Hz, i.e. one thousand billion oscillations per second). "By studying the interaction of THz electromagnetic waves - which oscillate about as fast as the electrons in metal scatter their momentum - with a spin-valve, we could directly measure for the first time the fundamental parameters of Mott conduction", explains Dmitry Turchinovich, project leader at the MPI-P. "In particular, we found that the traditional measurements performed on the slower timescales significantly underestimate the spin-asymmetry in electron scattering which is responsible for the magnetic sensor operation".

The results of the research team: Zuanming Jin, Alexander Tkach, Frederick Casper, Victor Spetter, Hubert Grimm, Andy Thomas, Tobias Kampfrath, and Mischa Bonn, led by Dmitry Turchinovich (MPI-P) and Mathias Klaeui (JGU) have recently been published in Nature Physics.

This work adds a new and powerful tool, ultrafast THz spectroscopy, to the studies in spintronics, opening up a new research field - terahertz spintronics.

####

For more information, please click here

Contacts:
Natacha Bouvier

49-613-137-9132

Copyright © Max Planck Institute for Polymer Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project