Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden

Dr Ruggero Verre processes data from his DELMIC SPARC system to 
aid the characterisation of optical antennas.
Dr Ruggero Verre processes data from his DELMIC SPARC system to aid the characterisation of optical antennas.

Abstract:
DELMIC develops and manufactures products which are focused on high performance, user friendly, integrated microscopy solutions. Users of the SPARC technology at Chalmers University of Technology in Gothenburg, Sweden are applying cathodoluminescence measurements to study the properties of nanophotonic devices.

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden

Delft, The Netherlands | Posted on December 16th, 2014

Dr Ruggero Verre is a post-doctoral researcher in the Department of Applied Physics - Division of Bionanophotonics at the Chalmers University of Technology in Gothenburg in southern Sweden. His work in the group headed by Professor Mikael Käll focuses on optical antennas, devices that are capable of focusing, amplifying and manipulating light on the nanoscale. Gold and silver particles are used for this application and, in this form, are known as plasmonic antennas. The applications of plasmonic antennas are numerous: they have been proposed as the key elements for the next generation of solar cells, as biological sensors and as an amplifier of optical signals to answer fundamental questions on the interaction between light and matter at the nanoscale level. Professor Käll's research group focuses on all these aspects of plasmonic antennas.

To benefit from the incredible properties of plasmonic antennas in real life, the first step is to answer a simple question: how does a plasmonic antenna work? To this end, cathodoluminescence is a fascinating and powerful tool because it allows researchers to "see the direction of light." The colours of a nanoscale object are observed with unprecedented resolution. In this way, it is possible to unravel and understand their fundamental properties. Given this, it is possible to think how these structures may be used. For example, plasmonic structures concentrate light in very specific locations depending on their shape, dimensions and materials. By understanding this, it becomes possible to place molecules or quantum objects in certain positions to amplify their interaction with light.

Dr Verre prepares his nanostructures in a cleanroom environment using lithographic tools. Prior to coming across cathodoluminescence, characterising them was his biggest challenge. Now, Dr Verre is able to characterise his latest, exotic structures quickly and efficiently.

This capability is now available as a retrofit for Scanning Electron Microscopes (SEM). The SPARC system from DELMIC is unique due to its modularity, sensitivity and reproducibility. The electron beam of the SEM is used to excite nanostructures and the cathodoluminescence detector is subsequently used to detect the produced light. The higher detection efficiency not only leads to better results, but also makes it possible to do a whole new type of nanophotonics research; angle resolved measurements. With this new detection method, the direction in which the light is emitted from an excited structure can be mapped. The light generated by the electron beam is picked up by the parabolic mirror and coupled outside the vacuum chamber of the SEM. The user may then choose between obtaining a 2D image of the mirror - which may be used for angle resolved measurements - or a spectroscopic image.

Dr Verre made some observations on why he likes the design of the system. "I see two technical advantages. The first is the mirror design which may be moved in all directions including rotation. These degrees of freedom allow us to achieve precise and reproducible control for repeatable results. The angle-resolved possibilities with ad-hoc analysis have the potential to be most useful. The SPARC system was designed with the idea to image the angular light emissions of different structures using a CCD camera. However, analysis and development of the ability to generate results was not straightforward. DELMIC has developed an integrated solution and provided excellent one-to-one support which has been of help to our research."

####

About DELMIC
DELMIC BV was formed in 2010 to develop and manufacture the SECOM platform. This originated from the Charged Particle Optics group of Delft University of Technology. At the end of 2011, the company obtained the SPARC system from Albert Polman’s Photonic Materials group of the FOM Institute AMOLF, Amsterdam. Together, the SECOM and the SPARC systems enable DELMIC to cater to a broad range of researcher with applications from nanophotonics to life sciences.

Both systems are currently commercially available. DELMIC focuses on the belief that integrated systems are the perfect way for users to obtain exciting new results quickly and accurately, without the need for specialist instrument training.

In 2014, in collaboration with benchtop EM supplier, Phenom-World, DELMIC launched Delphi, the world’s first integrated tabletop fluorescence and electron correlative microscope.

For more information, please click here

Contacts:
DELMIC BV
Molengraaffsingel 12-14
2629JD Delft
The Netherlands
T +31 (0)15 7440158
www.delmic.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
www.talking-science.com

Copyright © DELMIC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

News and information

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Announcements

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Tools

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Nanotechnology delivers hepatitis B vaccine: X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response. The material can give rise to a polyvaccine against six diseases July 12th, 2019

New-Contracts/Sales/Customers

180 Degree Capital Corp.’s Portfolio Company, TheStreet, Inc., Enters into Agreement to be Acquired by TheMaven, Inc. for $16.5 Million June 13th, 2019

Analog Bits and GLOBALFOUNDRIES Deliver Differentiated Analog and Mixed Signal IP for High-Performance Mobile and Compute Applications: Analog Bits’ Analog and Mixed Signal IPs Including Various PLLs, PCIe Reference Clock, Sensors and Power Circuits with GLOBALFOUNDRIES 12nm Fin June 5th, 2019

Successful installation of the first Photonic Professional GT2 at KEIO University in Japan May 16th, 2019

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project