Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Colorful nano-guides to the liver

Abstract:
Jena scientists have been successful in producing highly specific nanoparticles. Depending on the bound dye the particles are guided to the liver or to the kidney and deliver their payload of active ingredients directly to the targeted tissue. Moreover, the dyes enable the tracking of the transport processes by intravital microscopy or, in a non-invasive way, by multi spectral optoacoustic tomography. The reduction of cholesterol production induced by siRNA served as the proof-of-principle for the developed method. The scientists report their data in the new edition of the scientific journal "Nature Communications".

Colorful nano-guides to the liver

Jena, Germany | Posted on December 3rd, 2014

They are one of the great hopes for target-oriented treatment approaches: the so-called small interfering RNA-molecules, siRNA. These are able to mute specific genes, by preventing them from producing proteins which are encoded on them. To accomplish this, the siRNA has to be delivered specifically into the targeted cells in order to work only there and nowhere else. Moreover, the siRNA should not be just excreted or, even worse, damage healthy tissue. This is what makes the handling of siRNA extremely difficult. Physicians and chemists from Jena, Munich (both Germany) and the USA have now succeeded in producing nano-transporters for this genetic material which are able to specifically and efficiently target selected cell types and release their active payload there.


Fluorescent dyes are both address labels and tracking numbers all in one

The particles which are based on polymers are marked with near infrared fluorescent dyes and loaded with siRNA. The dyes work like address labels and tracking numbers for the particles all in one. "Depending on the chemical structure of the dye the particles are filtered out of the blood either via the kidney tissue or via liver cells. At the same time this route can easily be tracked by optical methods with the aid of the dyes," describes intensive care physician Prof. Dr. Michael Bauer. His research team at the Jena Hospital Centre for Sepsis Control and Care (CSCC), which is supported by the Federal Ministry of Education and Research, was also able to show that the dye is specifically absorbed by a specific cellular transporter of the liver epithelial cells and taken up into the cells.


Toolbox for nanomedicine

In this way the siRNA load is exclusively released in the target cells. The specifically functionalized nano-containers have been designed and produced in the laboratories of the Jena Center for Soft Matter (JCSM) of the Friedrich Schiller University in Jena. "This method can be regarded as a kind of toolbox for a multitude of different siRNA-nanotransporters which can ensure the targeted ,switch-off' of specific protein biosynthesis in different cell types," the Director of the JCSM, Prof. Dr. Ulrich S. Schubert, states. With the possibility to test the non-coupled dyes in advance and to switch off genes which are associated with illnesses, the principle offers new approaches to a personalized therapy of various diseases. In the newly founded SmartDyeLivery GmbH, the Jena scientists want to further develop the technology to put it into practical use in the clinical environment, especially in cases of acute septic infections.

The Jena nanomedicine researchers explain in their study the working principle of their toolbox using the example of cholesterol production. They loaded the nanoparticles with targeting dyes attached with siRNA-molecules. The siRNA molecules interfered with cholesterol production in hepatocytes, which resulted a clear reduction in the cholesterol level in the blood of test animals. The study is now published in the scientific journal "Nature Communications".

Original-Publication:
A. T. Press, A. Traeger, C. Pietsch, A. Mosig, M. Wagner, M. G. Clemens, N. Jbeily, N. Koch, M. Gottschaldt, N. Bézière, V. Ermolayev, V. Ntziachristos, J. Popp, M. Kessels, B. Qualmann, U. S. Schubert, M. Bauer: "Cell type-specific delivery of short interfering RNAs by dye-functionalized "theranostic" nanoparticles", Nat. Commun. 2014, DOI: 10.1038/ncomms6565

####

For more information, please click here

Contacts:
Axel Burchardt

49-364-193-1031

Prof. Dr. Michael Bauer
Center for Sepsis Control and Care (CSCC), University Hospital Jena
Phone: +0049 (0)3641 9323111


Prof. Dr. Ulrich S. Schubert
Jena Center for Soft Matter (JCSM), Friedrich Schiller University in Jena
Phone: +0049 (0)3641 948200

Copyright © Friedrich-Schiller-Universitaet Jena

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Imaging

Raman, UV-visible-NIR, Photoluminescence and Polarization Spectroscopy of Microscopic Samples May 29th, 2020

Eavesdropping on single molecules with light by replaying the chatter May 15th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Nanomedicine

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

2D sandwich sees molecules with clarity: Rice University engineers adapt 2D ‘sandwich’ for surface-enhanced Raman spectroscopy May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Discoveries

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Announcements

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Tools

Raman, UV-visible-NIR, Photoluminescence and Polarization Spectroscopy of Microscopic Samples May 29th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments April 17th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project