Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NIST researchers enabled by AFM-IR to publish first nanoscale IR spectra of individual plasmonic nanostructures

Schematic showing the photothermal induced resonance (PTIR) technique: this combines the lateral resolution of atomic force microscopy (AFM) with the chemical specificity of IR spectroscopy. A wavelength-tunable, pulsed IR laser (purple) illuminates a sample consisting of plasmonic gold resonators from the below. The resulting thermal expansion of the sample is detected locally by the AFM cantilever tip, which is monitored by reflecting a laser (blue) off the back of the cantilever.Image reproduced courtesy of NIST
Schematic showing the photothermal induced resonance (PTIR) technique: this combines the lateral resolution of atomic force microscopy (AFM) with the chemical specificity of IR spectroscopy. A wavelength-tunable, pulsed IR laser (purple) illuminates a sample consisting of plasmonic gold resonators from the below. The resulting thermal expansion of the sample is detected locally by the AFM cantilever tip, which is monitored by reflecting a laser (blue) off the back of the cantilever.

Image reproduced courtesy of NIST

Abstract:
Anasys Instruments reports on the new AFM-IR results from the Energy Research Group at NIST just published in the journal for Advanced Optical Materials. The paper is entitled "Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique." 1

NIST researchers enabled by AFM-IR to publish first nanoscale IR spectra of individual plasmonic nanostructures

Santa Barbara, CA | Posted on October 10th, 2014

Researchers from the NIST Center for Nanoscale Science and Technology (CNST) and the University of Maryland have used photothermal induced resonance (PTIR) to characterize individual plasmonic nanomaterials in order to obtain absorption maps and the first examples of absorption spectra with nanometer-scale resolution. Nanostructuring of plasmonic materials enables engineering of their resonant optical response and creates new opportunities for applications that benefit from enhanced light-matter interactions, including sensing, photovoltaics, photocatalysis, and therapeutics.

Project Leader, Andrea Centrone and his co-workers in the Energy Research Group at NIST used a technique called photothermally induced resonance (PTIR) where an AFM tip is used as an IR absorbance detector thus enabling nanoscale IR spectroscopy. Since the PTIR signal is not affected by scattering, PTIR spectra are free of Fano spectral distortions typically observed in the far-field.

Commenting on the work, Centrone says "we showed that PTIR characterization is not just applicable to organics, insulators and semiconductors, as demonstrated previously, but that metals are also amenable to it. This is an important step forward for applying the PTIR technique to a wider variety of functional devices."

PTIR is at the core of the nanoIR platform developed and supplied by Anasys Instruments for this work. Now in its second generation, the nanoIR2 combines key elements of both nanoscale IR spectroscopy and atomic force microscopy (AFM) to enable IR spectroscopy and imaging on the nanoscale. In addition to revealing chemical composition, the nanoIR2 system provides high-resolution characterization of local topographic, mechanical, and thermal properties. Potential application areas span the realms of polymer science, materials science, and life science, including detailed studies of structure property correlations.

Reference:

1) Nanoscale imaging and spectroscopy of plasmonic modes with the PTIR technique,
A. M. Katzenmeyer, J. Chae, R. Kasica, G. Holland, B. Lahiri, and A. Centrone, Advanced Optical Materials 2, 718-722 (2014).

####

About Anasys Instruments
Anasys Instruments designs breakthrough, award-winning products that deliver nanoscale probe based analytical techniques while providing high quality AFM imaging. We pioneered nanoscale IR spectroscopy, nanoscale thermal analysis and wideband nanoscale dynamic mechanical spectroscopy.

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
325 Chapala Street
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310
http://www.anasysinstruments.com/


Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
http://www.talking-science.com/

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project