Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ultrasonic Waves Applied in Production of Graphene Nanosheets

Abstract:
Graphene oxide nanosheets were produced through a simple, fast and economical method by Iranian researchers from Ferdowsi University of Mashhad.

Ultrasonic Waves Applied in Production of Graphene Nanosheets

Tehran, Iran | Posted on August 20th, 2014

Applied properties of these nanosheets are much higher than those of nanosheets produced through usual methods in previous studies.

Graphene oxide has numerous applications in different industries such as electronic pieces, fuel cells, energy storage, and photocatalytic activities. It has been tried in this research to present a simple method for the production of this valuable nanostructure without the need for difficult laboratorial conditions.

In this research, graphene oxide nanosheets were produced through chemical process (Hummer's method) by using ultrasonic waves with low intensity. The main advantage of the proposed method is the shorter period of the process and also reduction in the process temperature. High quality products are obtained in 20 minutes at ambient temperature.

Chemical oxidation of graphite is the most common method to produce graphene oxide, which takes place in the presence of potassium permanganate and sulfuric acid. Process conditions, specifically long duration and high temperature, are the most important problems of this reaction. In addition to reducing time and temperature, the use of ultrasonic waves enables the production of a product with higher quality. In other words, graphene oxide produced through this method has fewer layers in comparison with other chemical methods. Moreover and according to the results, nanosheets produced by using ultrasonic waves have higher specific area.

Taking into account the increase in rate and decrease in temperature and time required for the production method and finally the increase in the product quality, it is expected that the product of this applied research can be used more frequently in other industries.

Results of the research have been published in Journal of Colloid and Interface Science, vol. 43, issue 1, 2014, pp. 19-25.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Graphene/ Graphite

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project