Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform

The nanopore-gated optofluidic chip is able to distinguish influenza viruses from nanobeads.
The nanopore-gated optofluidic chip is able to distinguish influenza viruses from nanobeads.

Abstract:
Researchers at UC Santa Cruz have developed a new approach for studying single molecules and nanoparticles by combining electrical and optical measurements on an integrated chip-based platform. In a paper published July 9 in Nano Letters, the researchers reported using the device to distinguish viruses from similarly-sized nanoparticles with 100 percent fidelity.

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform

Santa Cruz, CA | Posted on August 14th, 2014

Combining electrical and optical measurements on a single chip provides more information than either technique alone, said corresponding author Holger Schmidt, the Kapany Professor of Optoelectronics in the Baskin School of Engineering and director of the W. M. Keck Center for Nanoscale Optofluidics at UC Santa Cruz. Graduate student Shuo Liu is first author of the paper.

The new chip builds on previous work by Schmidt's lab and his collaborators at Brigham Young University to develop optofluidic chip technology for optical analysis of single molecules as they pass through a tiny fluid-filled channel on the chip. The new device incorporates a nanopore that serves two functions: it acts as a "smart gate" to control the delivery of individual molecules or nanoparticles into the channel for optical analysis; and it allows electrical measurements as a particle passes through the nanopore.

"The nanopore delivers a single molecule into the fluidic channel, where it is then available for optical measurements. This is a useful research tool for doing single-molecule studies," Schmidt said.

Biological nanopores, a technology developed by coauthor David Deamer and others at UC Santa Cruz, can be used to analyze a DNA strand as it passes through a tiny pore embedded in a membrane. Researchers apply voltage across the membrane, which pulls the negatively charged DNA through the pore. Current fluctuations as the DNA moves through the pore provide electrical signals that can be decoded to determine the genetic sequence of the strand.

With the new device, researchers are able to gather electrical measurements on a nanoparticle as it moves through a pore in a solid membrane, and then measure the optical signals when the particle encounters a beam of light in the channel. By correlating the strength of the current decrease as a particle moves through the pore, the intensity of the optical signal, and the time of each measurement, the researchers are able to discriminate among particles with different sizes and optical properties and to determine the flow speed of particles through the channel.

The chip can also be used to differentiate particles of similar size but different composition. In one experiment, the researchers combined influenza viruses with nanobeads of a similar diameter and placed the mixture above the nanopore. The virus was labeled with a red fluorescent tag and the beads were labeled with a blue tag. The researchers correlated the electrical signal with the fluorescent wavelength and the time of each measurement. They found that the blue nanobeads traveled faster through the channel than red influenza virus, perhaps because of a difference in surface charge or mass. Besides identifying pathogens in a mixture, the researchers can also count the number of virus particles.

"This could be used as an analytical device to do reliable counts of virus particles in a sample," Schmidt said.

Currently, Schmidt's group is working on methods to add optical trapping to the device. This would allow a molecule in the channel to be held in one place, investigated, and released, with the potential to analyze hundreds of molecules in an hour. "Having this all on one chip would make single-molecule measurements much easier and more convenient," Schmidt said.

###

In addition to Liu and Schmidt, the coauthors include UCSC graduate student Joshua Parks, and Yue Zhao and Aaron Hawkins at Brigham Young University. This work was supported by the Keck Center for Nanoscale Optofluidics and grants from the National Science Foundation and National Institutes of Health.

####

For more information, please click here

Contacts:
Tim Stephens

831-459-2495

Copyright © University of California - Santa Cruz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Microfluidics/Nanofluidics

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology July 7th, 2015

Lehigh University researchers unveil engineering innovations at TechConnect 2015: TechConnect is the world's largest accelerator for industry-vetted emerging-technologies ready for commercialization June 11th, 2015

How to cut a vortex into slices: A group of physicists, lead by Olga Vinogradova, professor at the Lomonosov Moscow State University, came up with a way to stir up a liquid in the microchannel June 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Seeing quantum motion August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Discoveries

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Announcements

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Research partnerships

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic