Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures

SEM image of a well-defined double helix
SEM image of a well-defined double helix

Abstract:
Nanocubes are anything but child's play. Weizmann Institute scientists have used them to create surprisingly yarn-like strands: They showed that given the right conditions, cube-shaped nanoparticles are able to align into winding helical structures. Their results, which reveal how nanomaterials can self-assemble into unexpectedly beautiful and complex structures, were recently published in Science.

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures

Rehovot, Israel | Posted on August 11th, 2014

Dr. Rafal Klajn and postdoctoral fellow Dr. Gurvinder Singh of the Institute's Organic Chemistry Department used nanocubes of an iron oxide material called magnetite. As the name implies, this material is naturally magnetic: It is found all over the place, including inside bacteria that use it to sense the Earth's magnetic field.

Magnetism is just one of the forces acting on the nanoparticles. Together with the research group of Prof. Petr Král of the University of Illinois, Chicago, Klajn and Singh developed theoretical models to understand how the various forces could push and pull the tiny bits of magnetite into different formations. "Different types of forces compel the nanoparticles to align in different ways," says Klajn. "These can compete with one another; so the idea is to find the balance of competing forces that can induce the self-assembly of the particles into novel materials." The models suggested that the shape of the nanoparticles is important - only cubes would provide a proper balance of forces required for pulling together into helical formations.

The researchers found that the two main competing forces are magnetism and the van der Waals force. Magnetism causes the magnetic particles to both attract and repel one another, prompting the cubic particles to align at their corners. Van der Waals forces, on the other hand, pull the sides of the cubes closer together, coaxing them to line up in a row. When these forces act together on the tiny cubes, the result is the step-like alignment that produces helical structures.

In their experiments, the scientists exposed relatively high concentrations of magnetite nanocubes placed in a solution to a magnetic field. The long, rope-like helical chains they obtained after the solution was evaporated were surprisingly uniform. They repeated the experiment with nanoparticles of other shapes but, as predicted, only cubes had just the right physical shape to align in a helix. Klajn and Singh also found that they could get chiral strands - all wound in the same direction - with very high particle concentrations in which a number of strands assembled closely together. Apparently the competing forces can "take into consideration" the most efficient way to pack the strands into the space.

Although the nanocube strands look nice enough to knit, Klajn says it is too soon to begin thinking of commercial applications. The immediate value of the work, he says, is that it has proven a fundamental principle of nanoscale self-assembly. "Although magnetite has been well-studied - also its nanoparticle form - for many decades, no one has observed these structures before," says Klajn. "Only once we understand how the various physical forces act on nanoparticles can we begin to apply the insights to such goals as the fabrication of previously unknown, self-assembled materials."

Dr. Rafal Klajn's research is supported by the Abramson Family Center for Young Scientists; the estate of Olga Klein Astrachan; and the European Research Council.

####

For more information, please click here

Contacts:
Yivsam Azgad

972-893-43852

Copyright © The Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Self Assembly

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Materials/Metamaterials

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project