Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Like cling wrap, new biomaterial can coat tricky burn wounds and block out infection

Super-thin nanosheets could help transform the treatment of burn wounds.

Credit: Yosuke Okamura
Super-thin nanosheets could help transform the treatment of burn wounds.

Credit: Yosuke Okamura

Abstract:
Title

Development of fragmented nanosheets and patchwork coating as aqueous surface modifiers for biomedical applications

Abstract

Free-standing ultra-thin films (often called nanosheets) composed of biocompatible polymers (size >cm, thickness <100 nm) represent unique properties as good adhesiveness, exquisite flexibility, and a high degree of transparency1). However, they are often hard to coat irregular/uneven interfaces due to the structural aspect (cm-size). In this paper, we propose a novel nanobiomaterial "fragmented nanosheets" to effectively coat the uneven interfaces and a patchwork coating as an aqueous surface modifier for biomedical applications. Free-standing nanosheets composed of biodegradable poly(L-lactic acid) (PLLA) with a thickness of 60 6 nm were successfully mass-produced by a simple combination of a spin-coating-assisted multi-layering process of poly(vinyl alcohol) and PLLA and a peeling technique. Intriguingly, the PLLA nanosheets could be easily fragmented by homogenization at 30,000 rpm and then reconstructed into a sheet on various interfaces (steels, glasses, plastics and skin) without any adhesive reagents. The adhesion behavior resembled a "patchwork", which was evident as a sequential series of structural colors on the substrate. For a biomedical application, we demonstrated that the patchwork coating of fragmented nanosheets acts as an excellent barrier against burn wound infections by Pseudomonas aeruginosa2). This material thus constitutes a promising alternative to conventional therapy for burn patients. We will also propose that the patchwork coating of other biocompatible polymers (polyimide and polyurethane etc.) containing phospholipid moiety3) converts various substrates to blood-compatible surfaces.

1) Okamura, Y. et al. Adv. Mater. 21, 4388-92 (2009).

2) Okamura, Y. et al. Adv. Mater. 25, 545-51 (2013).

3) Nagase Y. et al. Biomedical Engineering - Frontiers and Challenges, Chapter 11, 217-232, InTech, Croatia (2011).

Like cling wrap, new biomaterial can coat tricky burn wounds and block out infection

San Francisco, CA | Posted on August 10th, 2014


Wrapping wound dressings around fingers and toes can be tricky, but for burn victims, guarding them against infection is critical. Today, scientists are reporting the development of novel, ultrathin coatings called nanosheets that can cling to the body's most difficult-to-protect contours and keep bacteria at bay.

The researchers are speaking about their materials, which they've tested on mice, at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.

The meeting features nearly 12,000 presentations on a wide range of science topics and is being held here through Thursday.

Yosuke Okamura, Ph.D., explains that existing wound dressings work well when it comes to treating burns on relatively flat and broad areas. But the human body has curves, wrinkles and ridges that present problems for these dressings. So Okamura's team developed a novel biomaterial out of tiny pieces of nanosheets that are super-flexible and sticky.

"The nanosheets can adhere not only to flat surfaces, but also to uneven and irregular surfaces without adding any adhesives," he says.

That would make a big difference in the way burn victims are treated. According to the Centers for Disease Control and Prevention, someone is injured by fire every 30 minutes. Burn wounds are vulnerable to infection, and keeping them sealed off from bacteria is essential for a successful recovery.

Okamura's team at Tokai University makes the nanosheets out of a biodegradable polyester called poly(L-lactic acid), or PLLA. They put the material into a test tube with water and spin it, which breaks up the sheets into even smaller pieces. When they pour the liquid onto a flat surface, the tiny fragments overlap in a patchwork and dry as a single nanosheet.

They tested out the nanosheets' ability to coat small and irregular shapes by dipping different things into the mixture, including a metal needle and a mouse's fingers. The nanosheet patchwork effectively covered even the smallest bumps and wrinkles on the mouse's digits, and after the material dried, it clung in place.

When the researchers tested the nanosheets on burns, the dressing effectively kept out the common bacteria, Pseudomonas aeruginosa. This species of pathogen is often a culprit in skin infections and is notorious for causing hospital-acquired infections that can be deadly. Multi-drug resistant strains are also a serious concern.

The dressing protected wounds from infection for three continuous days. With an additional coating, the nanosheets kept bacteria out for a total of six days. That means the material, if eventually approved for human patients, could cut down the number of times dressings have to be changed. With an eye toward human clinical trials, the researchers are currently planning large-scale animal tests and safety tests.

In addition to PLLA nanosheets, Okamura's group has recently started developing a novel set of similar, super-flexible, patchwork coatings composed of polymers with a phosphorylcholine group. They have shown that these materials are compatible with blood and could act as coatings for medical devices, such as catheters.

###

Okamura acknowledges funding from the Japan Society for the Promotion of Science.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein
415-978-3506 (S.F. Press Center, Aug. 9-13)
202-872-6042


Katie Cottingham, Ph.D.
415-978-3506 (S.F. Press Center, Aug. 9-13)
301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Nanomedicine

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Fullerex launches 2015 edition of the Bulk Graphene Pricing Report January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Alliances/Partnerships/Distributorships

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Nanowire clothing could keep people warm -- without heating everything else January 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE