Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement

This is a schematic of the process to localize NV centers in 3-D. The researchers blasted carbon ions through holes to create vacancies and heated the diamond to make the vacancies mobile within the crystal. NV centers could form in the nitrogen-doped layer below where the holes were placed.

Credit: F.J. Heremans and D. Awschalom/U. Chicago and K. Ohno/UCSB
This is a schematic of the process to localize NV centers in 3-D. The researchers blasted carbon ions through holes to create vacancies and heated the diamond to make the vacancies mobile within the crystal. NV centers could form in the nitrogen-doped layer below where the holes were placed.

Credit: F.J. Heremans and D. Awschalom/U. Chicago and K. Ohno/UCSB

Abstract:
By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. They describe their technique in a paper published in the journal Applied Physics Letters, from AIP Publishing.

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement

Washington, DC | Posted on August 5th, 2014

David Awschalom, a physicist at the Institute for Molecular Engineering at the University of Chicago, and his colleagues study a technologically useful diamond defect called a nitrogen vacancy (NV) center. NV centers consist of a nitrogen atom adjacent to a vacant spot that replaces two carbon atoms in the diamond crystal, leaving an unpaired electron. Researchers can use a property of the unpaired electron known as its spin to store and transmit quantum information at room temperature.

Qubits and Quantum Sensors

NV centers are attractive candidates for qubits, the quantum equivalent of a classical computing bit. A single NV center can also be used for completely different applications, such as measuring temperature, as well as to image electric and magnetic fields on the nanometer-scale by placing it at the tip of a diamond-based scanning probe.

A primary obstacle to further exploiting NV centers for practical quantum computing and nanoscale sensing devices lies in the difficulty of placing the centers within what Awschalom calls the functional "sweet spots" of the devices. Another challenge is increasing the NV center density without sacrificing their spin lifetimes, which must remain long in order to extract the most useful information from the system.

Awschalom and his colleagues have developed a new way to create NV centers that could help overcome both these challenges.

That's the Spot

The key to the team's new approach is to create the nitrogen and vacancy defects separately, Awschalom said. First, the team grew a layer of nitrogen-doped crystal within a diamond film. The researchers kept the nitrogen layer extremely thin by reducing the growth rate of the film to approximately 8 nanometers/hour. The nanometer-scale nitrogen-doped layer constrains the possible location of the NV centers in the depth direction.

Secondly, the researchers created a mask to cover the film, leaving only pinprick holes. They blasted carbon ions through the holes to create vacancies and heated the diamond to make the vacancies mobile within the crystal. NV centers could form in the nitrogen-doped layer below where the holes were placed.

Using this approach the team successfully localized NV centers within a cavity approximately 180 nanometers across -- a volume small enough to be compatible with many diamond-based nanostructures used in sensing devices and experimental quantum information systems.

The localized NV centers could also hold a specific spin for longer than 300 microseconds. This so-called spin coherence time was an order of magnitude better than that achieved by other 3-D localization methods. The longer spin lifetime means the NV centers can detect smaller magnetic signals and hold quantum information for longer.

One of the team's goals for using their new technique is to measure the nuclear spins of hydrogen atoms - one of the tiniest magnetic signals - within a biological molecule. The research could reveal new insights into how important biological functions like photosynthesis work. "Our research impacts diverse fields of science and technology," Awschalom said. "Technological advancements always open new avenues of scientific research."

The authors of this paper are affiliated with the University of California, Santa Barbara and the University of Chicago.

####

About American Institute of Physics (AIP)
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Three-dimensional localization of spins in diamond using 12C implantation," is authored by Kenichi Ohno, F. Joseph Heremans, Charles F. de las Casas, Bryan A. Myers, Benjamín J. Alemán, Ania C. Bleszynski Jayich, and David D. Awschalom. It will be published in the journal Applied Physics Letters on August 5, 2014 (DOI: 10.1063/1.4890613). After that date, it can be accessed at:

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum Computing

Developing reliable quantum computers February 22nd, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Quantum algorithm could help AI think faster: Researchers in Singapore, Switzerland and the UK present a quantum speed-up for machine learning February 2nd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Nanobiotechnology

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project