Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene surfaces on photonic racetracks

Graphene biochemical sensors could become reality
Graphene biochemical sensors could become reality

Abstract:
Graphene could enable new kind of photonics-based chemical sensors and photo-detectors, University of Manchester researchers have shown.

Graphene surfaces on photonic racetracks

Manchester, UK | Posted on August 2nd, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Just as information can be carried by electrons in metal wires in a microchip, photons of light can carry information through silicon waveguides to form a photonic microchip. Photonic microchips are often regarded as the future of computer processing and telecommunications because of the vastly increased speeds of operation and bandwidth enhancements.

Perhaps more surprisingly, they are also finding applications as highly sensitive bio-chemical sensor devices.

In this work led by University of Manchester scientists Dr Aravind Vijayaraghavan and Dr Iain Crowe in collaboration with scientists from University of Southampton, graphene coatings have been applied to what are known as ‘racetrack resonators' - waveguide loops shaped like oval racetracks - to form a potentially novel device architecture.

Dr Vijayaraghavan explains: "When light travels around such a racetrack, some of the light ‘leaks' out of the waveguide surface, and this ‘evanescent field' can be used for chemical sensing applications. A coating of graphene on the surface of a waveguide can be used to add further capability to such a sensor, such as making it more sensitive and selective.

"In this paper, we have calculated how much light is absorbed by the graphene when it coats the waveguide, and recommend optimum conditions for the graphene coating to serve as a sensor enhancement layer."

Dr Crowe added: "The addition of the graphene layer to our silicon waveguide dramatically alters the way the light is guided through the device meaning that the light will interact even more strongly with surface deposited molecules, when employed in a sensor device.

"This strong interaction between the light and the graphene layer means that the device could also be used to improve the detection of light itself, at very low levels and across a broad range of frequencies when employed in a device known as a ‘photo-detector'.

Notes for editors
The paper ‘Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators' by Iain F Crowe, Nicholas Clark, Siham Hussein, Brian Towlson, Eric Whittaker, Milan M Milosevic, Frederic Y Gardes, Goran Z Mashanovich, Matthew P Halsall, and Aravind Vijayaraghavan is available on request from the Press Office.

Dr Vijayaraghavan is available for interview on request

####

For more information, please click here

Contacts:
Daniel Cochlin
Graphene Communications and Marketing Manager
The University of Manchester
0161 275 8382
07917 506158
www.graphene.manchester.ac.uk
www.manchester.ac.uk
Twitter: @UoMGraphene

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Graphene/ Graphite

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

Sensors

Chains of nanogold – forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic