Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene surfaces on photonic racetracks

Graphene biochemical sensors could become reality
Graphene biochemical sensors could become reality

Abstract:
Graphene could enable new kind of photonics-based chemical sensors and photo-detectors, University of Manchester researchers have shown.

Graphene surfaces on photonic racetracks

Manchester, UK | Posted on August 2nd, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Just as information can be carried by electrons in metal wires in a microchip, photons of light can carry information through silicon waveguides to form a photonic microchip. Photonic microchips are often regarded as the future of computer processing and telecommunications because of the vastly increased speeds of operation and bandwidth enhancements.

Perhaps more surprisingly, they are also finding applications as highly sensitive bio-chemical sensor devices.

In this work led by University of Manchester scientists Dr Aravind Vijayaraghavan and Dr Iain Crowe in collaboration with scientists from University of Southampton, graphene coatings have been applied to what are known as ‘racetrack resonators' - waveguide loops shaped like oval racetracks - to form a potentially novel device architecture.

Dr Vijayaraghavan explains: "When light travels around such a racetrack, some of the light ‘leaks' out of the waveguide surface, and this ‘evanescent field' can be used for chemical sensing applications. A coating of graphene on the surface of a waveguide can be used to add further capability to such a sensor, such as making it more sensitive and selective.

"In this paper, we have calculated how much light is absorbed by the graphene when it coats the waveguide, and recommend optimum conditions for the graphene coating to serve as a sensor enhancement layer."

Dr Crowe added: "The addition of the graphene layer to our silicon waveguide dramatically alters the way the light is guided through the device meaning that the light will interact even more strongly with surface deposited molecules, when employed in a sensor device.

"This strong interaction between the light and the graphene layer means that the device could also be used to improve the detection of light itself, at very low levels and across a broad range of frequencies when employed in a device known as a ‘photo-detector'.

Notes for editors
The paper ‘Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators' by Iain F Crowe, Nicholas Clark, Siham Hussein, Brian Towlson, Eric Whittaker, Milan M Milosevic, Frederic Y Gardes, Goran Z Mashanovich, Matthew P Halsall, and Aravind Vijayaraghavan is available on request from the Press Office.

Dr Vijayaraghavan is available for interview on request

####

For more information, please click here

Contacts:
Daniel Cochlin
Graphene Communications and Marketing Manager
The University of Manchester
0161 275 8382
07917 506158
www.graphene.manchester.ac.uk
www.manchester.ac.uk
Twitter: @UoMGraphene

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Graphene/ Graphite

Composite Pipe Long Term Testing Facility February 10th, 2016

Graphene decharging and molecular shielding February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Sensors

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Nanosheet growth technique could revolutionize nanomaterial production February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Discoveries

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Photonics/Optics/Lasers

Scientists take nanoparticle snapshots February 10th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic