Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Model Presented to Study Postbuckling Behavior of Nano/Microbeams

Abstract:
Iranian mechanical researchers from Shiraz University studied the effects of heat on postbuckling behavior of nano/microbeams and corrected the inconsistency in the correlations.

New Model Presented to Study Postbuckling Behavior of Nano/Microbeams

Tehran, Iran | Posted on July 3rd, 2014

They also succeeded in the presentation of analytical and modular respond to investigate the postbuckling behavior of the beams. By presenting analytical respond, simulation costs are decreased and the performance of micro/nanobeams can be demonstrated more precisely.

Numerous theories have so far been proposed to analyze the behaviors of micro/nanostructures. These theories try to predict the actual behavior of the structures by taking into consideration their very small scale. In this research, modified theory of changes in strain has been used for the simulation of nonlinear postbuckling behavior of micro/nanobeams, and the behavior of micro/nanobeam has been investigated as well as accurate simulation.

Results obtained from this research determine the effect of small size of micro/nanostructures on postbuckling forces. Small scale factors change critical force and postbuckling behavior. Results also show that Poisson's Factor should be taken into consideration in modified theory equations for strain changes, and small scale factors change the beginning point of postbuckling behavior. Thermal results show that thermal effects in micro/nanobeams with fixed boundary result in buckling but they change only the axial force in beams with moveable boundaries and they cannot lead to buckling.

The rate and accuracy of the results are increased taking into account the analytical respond presented for this system. Results of the research can be used as a valid reference for comparison purposes. Simulation costs reduced by presenting analytical respond even after the buckling, and the performance of micro/nanobeams can be determined more precisely.

Results of the research have been published in Composite Structures, vol. 106, December 2013, pp. 764-776.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Materials/Metamaterials

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project