Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation

Abstract:
For his doctoral dissertation in the Goldman Superconductivity Research Group at the University of Minnesota, Yu Chen, now a postdoctoral researcher at UC Santa Barbara, developed a novel way to fabricate superconducting nanocircuitry. However, the extremely small zinc nanowires he designed did some unexpected — and sort of funky — things.

Bending the rules: A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation

Santa Barbara, CA | Posted on June 29th, 2014

Chen, along with his thesis adviser, Allen M. Goldman, and theoretical physicist Alex Kamenev, both of the University of Minnesota, spent years seeking an explanation for these extremely puzzling effects. Their findings appear this week in Nature Physics.

"We were determined to figure out how we could reconcile the strange phenomena with the longstanding rules governing superconductivity," said lead author Chen. "The coexistence of superconductivity with dissipation, which we observed, is counterintuitive and bends the rules as we know them."

Typically superconductivity and dissipation are thought to be mutually exclusive because dissipation, a process in thermodynamic systems whereby electric energy is transformed into heat, is a feature of a normal — versus a superconductive — state.

"But we discovered that superconductivity and dissipation can coexist under rather generic conditions in what appears to be a universal manner," Chen said.

After long and careful work, which involved both experimental and theoretical efforts, the researchers found an explanation that fits. Behind all of the observed phenomena is a peculiar nonequilibrium state of quasiparticles — electron-like excitations that formed in the nanowires Chen designed.

The quasiparticles are created by phase slips. In a superconductive state, when supercurrent flows through the nanowire, the quantum mechanical function describing the superconductivity of the wire evolves along the length of the wire as a spiral shaped like a child's Slinky toy. From time to time, one of the revolutions of the spiral contracts and disappears altogether. This event is called a phase slip. This quirk generates quasiparticles, giving rise to a previously undiscovered voltage plateau state where dissipation and superconductivity coexist.

"The most significant achievement was making the nanowires smaller and cooler than anyone had done previously," Kamenev said. "This allowed the quasiparticles to travel through the wire faster and avoid relaxation. This leads to a peculiar nonthermal state, which combines properties of a superconductor and a normal metal at the same time."

In addition to discovering this unique phenomenon, the team also found another heretofore-unseen property in the voltage plateau. When a magnetic field is turned on in the voltage plateau state, rather than shrinking the superconducting region, which is what would usually occur, the superconducting area expands and is enhanced.

"This is an unexpected property of very small nanowires," said Goldman.

This state appears to be universal for ultra-small superconducting circuitry like Chen's, which features ideal contacts between the nano-elements and the leads. Such nanoscale superconductors may be key components in future superconducting computer systems.

"Our findings demonstrate that superconducting nanocircuits can be used as a simple, but rather generic platform to investigate nonequilibrium quantum phenomena," Chen concluded.

"Now we need to explore the parameters of nanowires that give rise to the effect and those that don't," Goldman said. "We also need to examine the behavior of wires of different lengths and different materials in order to further define the parameters."

####

For more information, please click here

Contacts:
Julie Cohen

805-893-7220

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Superconductivity

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Quantum nanoscience

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project