Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Diamond plates create nanostructures through pressure, not chemistry: Method is more ecological than chemical processes

Sandia National Laboratories researcher Hongyou Fan, center, points out a pressure result at the nanoscale to Sandia paper co-authors Paul Clem, left, and Binsong Li.

Credit: Photo by Randy Montoya, Sandia National Laboratories
Sandia National Laboratories researcher Hongyou Fan, center, points out a pressure result at the nanoscale to Sandia paper co-authors Paul Clem, left, and Binsong Li.
Credit: Photo by Randy Montoya, Sandia National Laboratories

Abstract:
You wouldn't think that mechanical force — the simple kind used to eject unruly patrons from bars, shoe a horse or emboss the raised numerals on credit cards — could process nanoparticles more subtly than the most advanced chemistry.

Diamond plates create nanostructures through pressure, not chemistry: Method is more ecological than chemical processes

Albuquerque, NM | Posted on June 28th, 2014

Yet, in a current paper in Nature Communications, Sandia National Laboratories researcher Hongyou Fan and colleagues appear to have achieved a start toward that end.

Their newly patented and original method uses simple pressure — a kind of high-tech embossing — to produce finer and cleaner results in forming silver nanostructures than do chemical methods, which are not only inflexible in their results but leave harmful byproducts to dispose of.

Fan calls his approach "a simple stress-based fabrication method" that, when applied to nanoparticle arrays, forms new nanostructures with tunable properties.

"There is a great potential market for this technology," he said. "It can be readily and directly integrated into current industrial manufacturing lines without creating new expensive and specialized equipment."

Said Sandia co-author Paul Clem, "This is a foundational method that should enable a variety of devices, including flexible electronics such as antennas, chemical sensors and strain detectors." It also would produce transparent electrodes for solar cells and organic light-emitting diodes, Clem said.

The method was inspired by industrial embossing processes in which a patterned mask is applied with high external pressure to create patterns in the substrate, Fan said. "In our technology, two diamond anvils were used to sandwich nanoparticulate thin films. This external stress manually induced transitions in the film that synthesized new materials," he said.

The pressure, delivered by two diamond plates tightened by four screws to any controlled setting, shepherds silver nanospheres into any desired volume. Propinquity creates conditions that produce nanorods, nanowires and nanosheets at chosen thicknesses and lengths rather than the one-size-fits-all output of a chemical process, with no environmentally harmful residues.

While experiments reported in the paper were performed with silver — the most desirable metal because it is the most conductive, stable and optically interesting and becomes transparent at certain pressures — the method also has been shown to work with gold, platinum and other metallic nanoparticles

Clem said the researchers are now starting to work with semiconductors.

Bill Hammetter, manager of Sandia's Advanced Materials Laboratory, said, "Hongyou has discovered a way to build one structure into another structure — a capability we don't have now at the nanolevel. Eight or nine gigapascal —the amount of pressure at which phase change and new materials occur — are not difficult to reach. Any industry that has embossing equipment could lay a film of silver on a piece of paper, build a conductive pattern, then remove the extraneous material and be left with the pattern. A coating of nanoparticles that can build into another structure has a certain functionality we don't have right now. It's a discovery that hasn't been commercialized, but could be done today with the same equipment used by anyone who makes credit cards."

The method can be used to configure new types of materials. For example, under pressure, the dimensions of ordered three-dimensional nanoparticle arrays shrink. By fabricating a structure in which the sandwiching walls permanently provide that pressure, the nanoparticle array will remain at a constant state, able to transmit light and electricity with specific characteristics. This pressure-regulated fine-tuning of particle separation enables controlled investigation of distance-dependent optical and electrical phenomena.

At even higher pressures, nanoparticles are forced to sinter, or bond, forming new classes of chemically and mechanically stable nanostructures that no longer need restraining surfaces. These cannot be manufactured using current chemical methods.

Depending on the size, composition and phase orientation of the initial nanoparticle arrays, a variety of nanostructures or nanocomposites and 3-D interconnected networks are achievable.

The stress-induced synthesis processes are simple and clean. No thermal processing or further purification is needed to remove reaction byproducts.

###

This work was funded by the Department of Energy's Office of Science. Other authors of the paper are from Cornell University and Los Alamos National Laboratory.

####

About DOE/Sandia National Laboratories
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

For more information, please click here

Contacts:
neal singer

505-845-7078

Copyright © DOE/Sandia National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Chemistry

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Laboratories

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Materials/Metamaterials

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Environment

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project