Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Water-cleanup catalysts tackle biomass upgrading: Rice University researchers register 4th 'volcano plot' for palladium-gold catalysts

Rice University scientists (from left) Michael Wong, Zhun Zhao and James Clomburg discovered a palladium and gold nanocatalyst that is faster -- about 10 times faster -- at converting glycerol into high-value products than catalysts of either metal alone.  
CREDIT: Jeff Fitlow/Rice University
Rice University scientists (from left) Michael Wong, Zhun Zhao and James Clomburg discovered a palladium and gold nanocatalyst that is faster -- about 10 times faster -- at converting glycerol into high-value products than catalysts of either metal alone.

CREDIT: Jeff Fitlow/Rice University

Abstract:
Rice University chemical engineer Michael Wong has spent a decade amassing evidence that palladium-gold nanoparticles are excellent catalysts for cleaning polluted water, but even he was surprised at how well the particles converted biodiesel waste into valuable chemicals.

Water-cleanup catalysts tackle biomass upgrading: Rice University researchers register 4th 'volcano plot' for palladium-gold catalysts

Houston, TX | Posted on June 26th, 2014

Through dozens of studies, Wong's team focused on using the tiny metallic specks to break down carcinogenic and toxic compounds. But his latest study, which is available online and due for publication in an upcoming issue of the Royal Society of Chemistry's journal Chemical Science, examined whether palladium-gold nanocatalysts could convert glycerol, a waste byproduct of biodiesel production, into high-value chemicals.

In scientific parlance, the data from the study produced a "volcano plot," a graph with a sharp spike that depicts a "Goldilocks effect," a "just right" balance of palladium and gold that is faster -- about 10 times faster -- at converting glycerol than catalysts of either metal alone.

"We've now seen this volcano plot at least four times now, first with TCE, then with the dry cleaning contaminant 'perc,' and more recently with chloroform and nitrites," Wong said. "The remarkable thing is that the reaction, in each case, is very different."

In previous studies, the nanocatalysts were used in reduction reactions, chemical processes marked by the addition of hydrogen. In the latest tests on glycerol conversion, the nanocatalysts spurred an oxidation reaction, which involves adding oxygen.

"Oxidation and reduction aren't just dissimilar; they're often thought of as being in opposite directions," Wong said.

In chemistry, the role of the catalyst is much like that of a matchmaker; catalysts cause other compounds to react with one another, often by bringing them into close proximity, but the catalysts themselves don't take part in the reaction. Catalysts often speed up reactions that would otherwise happen too slowly, and drugmakers and chemical companies use catalysts to improve the efficiency of their chemical processing. The global market for industrial catalysts is projected to top $19 billion by 2016.

Palladium and gold -- and mixtures of the two -- have long been recognized as extremely effective catalysts. Among catalysts, gold is now valued because it doesn't tarnish or oxidize, a process that can shorten a catalyst's lifespan. Palladium is typically prized because it is especially good at binding and inducing molecules to reduce or oxidize. Wong and colleagues have demonstrated a way to bring these two metals together with better control. They build their catalysts on gold spheres that are about four nanometers in diameter. The spheres are partially covered with palladium, so that the particles' surface contains some gold and some palladium.

Wong and colleagues have shown that covering 60-80 percent of the gold's surface area with palladium typically produces the ideal catalyst -- though the exact percentage varies for different reactions.

"Our synthesis knob, the thing we use to dial in the efficiency, is the coverage area, and the precision of that knob is really what sets us apart from other people who are studying bimetallic catalysis," Wong said. "That precision is what produces these beautiful volcano plots, but it also helps in another way because it allows us to develop a rigorous explanation for the effects that we're measuring."

In the latest study, Wong, Rice graduate student and lead author Zhun Zhao and colleagues from Rice, Argonne National Laboratory and the University of Groningen in Holland used high-powered X-ray spectroscopy and other techniques to show that the "Goldilocks" coverage area for glycerol catalysis was about 60 percent.

"Palladium by itself oxidizes, which is not good because it slows down the catalysis," Zhao said. "We found that the gold in our catalysts helps stabilize the palladium and prevents it from degrading. The catalysts in our tests had extremely high durability. Our best catalyst produced a glycerol product with higher purity and in less time than anything else we found in the literature."

Wong said the research opens up an exciting new area of exploration for his lab.

"Now that we understand how these work with glycerol, we can study reactions of other biomass molecules like glucose, a building block of plants," Wong said.

Additional co-authors include Rice's Lori Pretzer, Pongsak Limpornpipat, James Clomburg and Ramon Gonzalez, Groningen's Joni Arentz and Argonne's Neil Schweitzer, Tianpin Wu and Jeffrey Miller. The research was supported by the National Science Foundation, the Welch Foundation, the Sigma Xi Grants-in-Aid of Research program, Rice University and the Department of Energy.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is 6.3-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the Chemical Science paper is available at:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project