Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Deeper insights into protein folding: Study presents a new theoretical foundation explaining the mechanism of protein folding and unfolding in water

“Structure of staphylococcal nuclease"© Yakubovich et al.
“Structure of staphylococcal nuclease"

© Yakubovich et al.

Abstract:
Investigating the structure and dynamics of so-called Meso-Bio-Nano (MBN) systems—micron-sized biological or nanotechnology entities—is a rapidly expanding field of science. Now, scientists Alexander Yakubovich and Andrey Solov'yov from MBN Research Centre in Frankfurt, Germany, have produced a new theoretical study of a protein macromolecule changing from a coil structural conformation to a globular one. Their statistic mechanics model, just published in EPJ D, describes the thermodynamic properties of real proteins in an aqueous environment, using a minimal number of free physical parameters.

Deeper insights into protein folding: Study presents a new theoretical foundation explaining the mechanism of protein folding and unfolding in water

Heidelberg, Germany | Posted on June 26th, 2014

In this work, the authors confirmed the validity of their theoretical calculation of dependencies of the protein heat capacities on temperature by comparing it with the corresponding experimental measurements for two proteins, namely an enzyme called staphylococcal nuclease and an oxygen and iron carrier protein called metmyoglobin. Sudden changes in temperature could result in the loss of a protein's three-dimensional structure and function. Thus, these findings could contribute to our understanding of high-energy ions therapy on biological cells.

In this work, the authors focus on the folding and unfolding of globular proteins at various levels of temperature in an aqueous environment. Their statistical mechanics model is inspired by a pre-existing model of solvation of hydrophobic hydrocarbons. This leads to establishing the so-called partition function of this globular protein in water environment. In turn, this helps to determine all of the protein's thermodynamic characteristics at equilibrium. These include its heat capacity and the average number of amino acids in an unfolded conformation.

The study validates the use of an approximation of three stages of macromolecular complexes undergoing folding and unfolding transformations, instead of using fitting parameters as previously done. These results also significantly expand the possibilities of quantitative description of the structure conformation processes for other proteins obeying simple folding kinetics and complex multi-domain proteins with peculiar folding profiles.

####

For more information, please click here

Contacts:
Saskia Rohmer

49-622-148-78414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: A. V. Yakubovich and A. V. Solov'yov (2014), Quantitative thermodynamic model for globular protein folding, European Physical Journal D, DOI 10.1140/epjd/e2014-50097-3:

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE