Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists develop a 'nanosubmarine' that delivers complementary molecules inside cells: Researchers at the University of Miami and the University of Ulster have created nanoparticles that can transport interacting molecules into living cells

The sequential transport of donors and acceptors across cell membranes with independent and dynamic nanocarriers enables energy transfer exclusively in the intracellular space with concomitant fluorescence activation.

Credit: Francisco Raymo, professor of Chemistry and director of the laboratory for molecular photonics, at the University of Miami College of Arts and Sciences
The sequential transport of donors and acceptors across cell membranes with independent and dynamic nanocarriers enables energy transfer exclusively in the intracellular space with concomitant fluorescence activation.

Credit: Francisco Raymo, professor of Chemistry and director of the laboratory for molecular photonics, at the University of Miami College of Arts and Sciences

Abstract:
With the continuing need for very small devices in therapeutic applications, there is a growing demand for the development of nanoparticles that can transport and deliver drugs to target cells in the human body.

Scientists develop a 'nanosubmarine' that delivers complementary molecules inside cells: Researchers at the University of Miami and the University of Ulster have created nanoparticles that can transport interacting molecules into living cells

Coral Gables, FL | Posted on June 25th, 2014

Recently, researchers created nanoparticles that under the right conditions, self-assemble - trapping complementary guest molecules within their structure. Like tiny submarines, these versatile nanocarriers can navigate in the watery environment surrounding cells and transport their guest molecules through the membrane of living cells to sequentially deliver their cargo.

Although the transport of molecules inside cells with nanoparticles has been previously achieved using various methods, researchers have developed nanoparticles capable of delivering and exchanging complementary molecules. For practical applications, these nanocarriers are highly desirable, explains Francisco Raymo, professor of chemistry in the University of Miami College of Arts and Sciences and lead investigator of this project.

"The ability to deliver distinct species inside cells independently and force them to interact, exclusively in the intracellular environment, can evolve into a valuable strategy to activate drugs inside cells," Raymo says.

The new nanocarriers are15 nanometers in diameter. They are supramolecular constructs made up of building blocks called amphiphilic polymers. These nanocarriers hold the guest molecules within the confines of their water-insoluble interior and use their water-soluble exterior to travel through an aqueous environment. As a result, these nanovehicles are ideal for transferring molecules that would otherwise be insoluble in water, across a liquid environment.

"Once inside a living cell, the particles mix and exchange their cargo. This interaction enables the energy transfer between the internalized molecules," says Raymo, director of the UM laboratory for molecular photonics. "If the complementary energy donors and acceptors are loaded separately and sequentially, the transfer of energy between them occurs exclusively within the intracellular space," he says. "As the energy transfer takes place, the acceptors emit a fluorescent signal that can be observed with a microscope."

Essential to this mechanism are the noncovalent bonds that loosely hold the supramolecular constructs together. These weak bonds exist between molecules with complementary shapes and electronic properties. They are responsible for the ability of the supramolecules to assemble spontaneously in liquid environments. Under the right conditions, the reversibility of these weak noncovalent contacts allows the supramolecular constructs to exchange their components as well as their cargo.

The experiments were conducted with cell cultures. It is not yet known if the nanoparticles can actually travel through the bloodstream.

"That would be the dream, but we have no evidence that they can actually do so," Raymo says. "However, this is the direction we are heading."

The next phase of this investigation involves demonstrating that this method can be used to do chemical reactions inside cells, instead of energy transfers.

"The size of these nanoparticles, their dynamic character and the fact that the reactions take place under normal biological conditions (at ambient temperature and neutral environment) makes these nanoparticles an ideal vehicle for the controlled activation of therapeutics, directly inside the cells," Raymo says.

The current study is titled "Intracellular guest exchange between dynamic supramolecular hosts." It's published in the Journal of the American Chemical Society. Other authors are John F. Callan, co-corresponding author of the study, from the School of Pharmacy and Pharmaceutical Sciences at the University of Ulster; Subramani Swaminathan and Janet Cusido from the UM's Laboratory for Molecular Photonics, Department of Chemistry in the College of Arts and Sciences; and Colin Fowley and Bridgeen McCuaghan, School of Pharmacy and Pharmaceutical Sciences at the University of Ulster.

####

About University of Miami
The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of our diversity of our University family, we strive to develop future leaders of our nation and the world.

For more information, please click here

Contacts:
Annette Gallagher

305-284-1121

Copyright © University of Miami

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Nanomedicine

Patent for the Novel Cancer Therapies – Ceramide Nanoliposomes March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Nanobiotechnology

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE