Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Unlocking milk's formula could save lives, say scientists

Abstract:
A new study on the digestion of milk could lead to the development of new formulas for premature babies, weight loss drinks and potentially new drug delivery systems.

Unlocking milk's formula could save lives, say scientists

Victoria, Australia | Posted on June 23rd, 2014

Published in the journal ACS Nano, the Monash University research shows for the first time detailed insights into the structure of milk during digestion.

Whilst milk's nutritional values are well known, little research has been conducted into the detailed structure of milk and how its fats interact with the digestive system until now.

Funded by the Australian Research Council (ARC), and led by Dr Stefan Salentinig and Professor Ben Boyd from the Monash Institute of Pharmaceutical Sciences (MIPS), the team looked at the nanostructure of milk to find out how its components interact with the human digestive system.

They discovered milk has a highly geometrically ordered structure when being digested.

Dr Salentinig said the research provides a blueprint for the development of new milk products. It could also lead to a new system for drug delivery.

"By unlocking the detailed structure of milk we have the potential to create milk loaded with fat soluble vitamins and brain building molecules for premature babies, or a drink that slows digestion so people feel fuller for longer. We could even harness milk's ability as a ‘carrier' to develop new forms of drug delivery," Dr Salentinig said.

By chemically recreating the digestive system in a glass beaker and adding cows' milk, the team found that milk has a unique structure - an emulsion of fats, nutrients and water forms a structure which enhances digestion.

As well as laboratory work at MIPS, the researchers accessed specialist instruments at the Australian Synchrotron to simulate digestion and accelerate the research. Using enzymes present in the body, water was added to milk fat to break it down, and the Synchrotron's small angle X-ray scattering beam showed that when digested, the by-products of milk become highly organised.

Dr Salentinig said the structure is similar to a sponge, potentially enhancing the absorption of milk's healthy fats.

"We knew about the building blocks of milk and that milk fat has significant influence on the flavor, texture and nutritional value of all dairy food. But what we didn't know was the structural arrangement of this fat during digestion," he said.

"We found that when the body starts the digestion process, an enzyme called lipase breaks down the fat molecules to form a highly geometrically ordered structure. These small and highly organised components enable fats, vitamins and lipid-soluble drugs to cross cell membranes and get into the circulatory system," Dr Salentinig said.

The next phase of the research will see the team work with nutritionists to better make the link between these new findings and dietary outcomes, and under the ARC funding, utilize these findings to design and test improved medicines.

####

For more information, please click here

Contacts:
Lucy Handford

Copyright © Monash University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Sustainable Nanotechnologies Project November 20th, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Nanomedicine

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Discoveries

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Food/Agriculture/Supplements

Production of Biodegradable Nanocomposites of Wheat Gluten in Iran November 6th, 2014

New tool could help reshape the limits of synthetic biology: The 'telomerator' reshapes synthetic yeast chromosome into more flexible, realistic form, redefining what geneticists can build November 3rd, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Smallest world record has 'endless possibilities' for bio-nanotechnology October 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE