Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers synthesize previously unknown form of magnesium carbide

Abstract:
An international team of researchers from the United States and France, along with the head of a state-funded "mega grant" laboratory based at MIPT, Artyom Oganov, has synthesized a previously unknown form of magnesium carbide. This material can be used for synthesizing carbon nanostructures and other compounds. Details can be found in an article published in the journal Inorganic Chemistry.

Researchers synthesize previously unknown form of magnesium carbide

Moscow, Russia | Posted on June 23rd, 2014

A team of researchers from the Carnegie Institution for Science (United States), Paris-Sorbonne University, the European Synchrotron Radiation Facility in Grenoble,the SOLEIL synchrotron facility (France), the State University of New York at Stony Brookin the United States, and MIPT has synthesized and studied samples of a substance named beta magnesium carbide (Mg2C3).

To synthesize the compound, the group used presses that are able to create pressures of up to several tens of GPa (hundreds of thousands of atmospheric pressures) and that can heat a sample to more than 1,000 degrees Celsius. Using X-ray analysis, NMR (nuclear magnetic resonance) and optical spectroscopy they collected data showing that this substance has a unique atomic structure.

Experiments showed that the new version of magnesium carbide retains its structure after pressure is reduced to normal and temperatures return to normal room temperatures. It is still too early to speak about any devices that could use the obtained substance, the researchers say, but they add that, nevertheless,Mg2C3 is a promising element for synthesizing other compounds, including various carbon nanostructures.

MIPT's press service would like to thank Dr. Artyom Oganov for his generous help in writing this article.

Chemistry and Synchrotrons

Originally intended for experiments in the field of elementary particle physics, accelerators have been an invaluable tool for research in many different areas. Turning a beam of charged particles produces X-rays, which exceeds the radiation from traditional cathode tubes (a standard X-ray source for medical equipment) by a number of parameters. Accelerators are capable of producing radiation many orders of magnitude brighter, providing record short impulses. Moreover, the radiation is monochromatic and with the required polarization.

Synchrotrons have enabled chemists to carry out X-ray diffraction analysis of samples of any nature, including both inorganic compounds and biomolecules. Modern accelerators can X-ray minerals, details of mechanisms and structures, archaeological artifacts, and determine the exact chemical composition of a sample. Furthermore, ultra short impulses of radiation allow scientists to take snapshots of certain phases of chemical reactions, "catching" short-living intermediate products.

Modern synchrotron radiation centers offer various pieces of equipment, including furnaces, presses and spectrometers.

####

For more information, please click here

Contacts:
Alexandra O. Borissova

7-495-408-6445

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Chemistry

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Strem Chemicals Surpasses ChemStewards® Requirements: Strem Qualifies for SOCMA’s “Excellence” Ranking August 3rd, 2017

Discoveries

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Announcements

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Tools

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Research partnerships

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project