Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Changing Composition of Nanofibers Results in Treatment of Scars, Deep Wound

Abstract:
Iranian researchers from Isfahan University of Technology in association with researchers from Singapore National University produced nanofibers for the treatment of surface and deep wounds.

Changing Composition of Nanofibers Results in Treatment of Scars, Deep Wound

Tehran, Iran | Posted on June 21st, 2014

The nanofibers are made of cheap and available materials and they are able to control humidity and oxygen diffusion into the wound. Delivery of nutritious materials to cells and removing the wastes are among other characteristics of the product.

The nanofibers are made of cellulose acetate/gelatin, and they have a similar structure with human body with appropriate degradability. Among other achievements of the research, mention can be made of the use of relatively cheap materials that are commercially available and the application of electrospinning method as the most common-used and cost-effective method for the production of nanofibers. The interesting point is that only by changing the ratio of cellulose acetate to gelatin, the nanofibers can be used as bandages in the treatment of superficial wounds or as scaffold in the recovery of deep wounds.

The produced nanofibers enable the desirable interaction with cells by carrying out dimension and structural simulation of natural cellular external matrix. The porosity in the nanofiberous structure provides the chance for the delivery of nutritious materials to the cells and removing the waste from the cells. These facts are considered as key parameters in the success of tissue engineering technology in the recovery of damaged tissues.

Researchers hope to modify the produced structures after in vivo tests in animal samples and clinical test so they can be used in the treatment of various skin damages. Moreover, the release of various types of drugs for the treatment of wound and reducing infection is among other applications of the nanofibers.

Results of the research have been published in Journal of Biomaterials Applications, vol. 28, issue 6, January 2014, pp. 909-921.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project