Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti and Akrivis Technologies to Develop Nanomedicine Platform for High Payload Targeted Drug Delivery: New Theranostic Platform Will Combine Ultrasensitive Detection, High Payloads and More Efficient Cell Targeting

Abstract:
CEA-Leti and Akrivis Technologies, LLC announced their collaboration to develop an extremely adaptable, efficient and highly targeted drug delivery platform for chemotherapy and other treatments that require a high concentration of powerful drugs to be delivered precisely to targeted cells.

CEA-Leti and Akrivis Technologies to Develop Nanomedicine Platform for High Payload Targeted Drug Delivery: New Theranostic Platform Will Combine Ultrasensitive Detection, High Payloads and More Efficient Cell Targeting

Grenoble, France | Posted on June 19th, 2014

The new platform will be based on Akrivis Technologies' proprietary Z-TECT™ technology that targets and detects unusually low levels of proteins and molecular targets and Leti's Lipidot® nanovector delivery capability.

Developed by Akrivis Technologies, LLC, a biopharmaceutical company based in Cambridge, Mass. USA, Z-TECT™ is a unique technology platform that combines nanotechnology, molecular detection and immunology to provide high sensitivity and detection levels across multiple immunoassays and other assay formats, from colorimetric to fluorescent detection in vitro and imaging in vivo.

Developed by Leti and introduced for commercial uses in 2011, the Lipidot® technology is a versatile nano-delivery platform based on very small droplets of oil that encapsulate and carry drugs, fluorescent imaging agents or any other lipophilic payload to targeted cells for diagnosis or treatment.

By combining their delivery and targeting platforms, Leti and Akrivis intend to develop a new, more efficient and safer platform to deliver high payloads specifically to targeted cells. The resulting targeted nanoparticles will be optimized in a first phase for research and pre-clinical in vitro and in vivo applications. Then, in a second phase, they will be further developed clinically for in vitro diagnostics, in vivo imaging and targeted therapy.

"The new targeted nanoparticles jointly developed by Leti and Akrivis Technologies will dramatically improve the effectiveness of both diagnosis and treatment of diseases and reduce dangerous or unpleasant side effects," said Patrick Boisseau, head of Leti's nanomedicine program and chairman of the European Technology Platform - Nanomedicine (ETPN). "While specifically designed to meet the needs of pharmaceutical and biotech companies, the new platform will be customizable for other end-user applications such as diagnostics and theranostics."

"Detecting disease earlier and delivering the precise drug dosage at the right place at the right moment are major steps towards improving patient diagnosis and treatment as well as controlling healthcare costs," said Joel Berniac, CEO of Akrivis Technologies. "Akrivis and Leti have highly complementary nanomed technology platforms that will come together and offer physicians powerful new options for diagnosis and treatment."

Supported by AEPI, the Grenoble-Isère economic development agency, Akrivis Technologies and Leti created a joint lab, which was launched on June 2. "Leti's collaboration with Akrivis Technologies underscores Grenoble's strengths as a center for nanomedicine R&D and we are very pleased that they chose Leti and Grenoble for this exciting research and development project," said Joëlle Seux, AEPI director.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo. Visit www.leti.fr for more information.

About Akrivis Technologies, LLC

Akrivis Technologies, LLC is a privately held biopharmaceutical company headquartered in Cambridge, Massachusetts, USA, committed to the early detection, diagnosis and treatment of serious and life-threatening diseases based on its patented Z-TECTTM technology platform. Unlike traditional methods, which are not readily adaptable across multiple assay formats and require special and expensive detection equipment, Akrivis’ Z-TECTTM technology platform amplifies signal at the source. It allows the detection in vitro of unusually low levels of proteins and molecular targets. Z-TECTTM is also capable of imaging millimeter-size lesions in animal models and will make clinical cancer detection in vivo possible at much lower levels of growth. Finally the same Z-TECTTM technology platform allows the delivery of high payloads of drug molecules specifically to targeted cells, offering exciting theranostic applications that can simultaneously combine diagnostic imaging with targeted therapy. Visit www.akrivis.com for more information.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38-78-02-26


Akrivis
+1 617-827-2777


PR Agency
+33 6 64-52-81-10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Alliances/Trade associations/Partnerships/Distributorships

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Research partnerships

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project