Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti and Akrivis Technologies to Develop Nanomedicine Platform for High Payload Targeted Drug Delivery: New Theranostic Platform Will Combine Ultrasensitive Detection, High Payloads and More Efficient Cell Targeting

Abstract:
CEA-Leti and Akrivis Technologies, LLC announced their collaboration to develop an extremely adaptable, efficient and highly targeted drug delivery platform for chemotherapy and other treatments that require a high concentration of powerful drugs to be delivered precisely to targeted cells.

CEA-Leti and Akrivis Technologies to Develop Nanomedicine Platform for High Payload Targeted Drug Delivery: New Theranostic Platform Will Combine Ultrasensitive Detection, High Payloads and More Efficient Cell Targeting

Grenoble, France | Posted on June 19th, 2014

The new platform will be based on Akrivis Technologies' proprietary Z-TECT™ technology that targets and detects unusually low levels of proteins and molecular targets and Leti's Lipidot® nanovector delivery capability.

Developed by Akrivis Technologies, LLC, a biopharmaceutical company based in Cambridge, Mass. USA, Z-TECT™ is a unique technology platform that combines nanotechnology, molecular detection and immunology to provide high sensitivity and detection levels across multiple immunoassays and other assay formats, from colorimetric to fluorescent detection in vitro and imaging in vivo.

Developed by Leti and introduced for commercial uses in 2011, the Lipidot® technology is a versatile nano-delivery platform based on very small droplets of oil that encapsulate and carry drugs, fluorescent imaging agents or any other lipophilic payload to targeted cells for diagnosis or treatment.

By combining their delivery and targeting platforms, Leti and Akrivis intend to develop a new, more efficient and safer platform to deliver high payloads specifically to targeted cells. The resulting targeted nanoparticles will be optimized in a first phase for research and pre-clinical in vitro and in vivo applications. Then, in a second phase, they will be further developed clinically for in vitro diagnostics, in vivo imaging and targeted therapy.

"The new targeted nanoparticles jointly developed by Leti and Akrivis Technologies will dramatically improve the effectiveness of both diagnosis and treatment of diseases and reduce dangerous or unpleasant side effects," said Patrick Boisseau, head of Leti's nanomedicine program and chairman of the European Technology Platform - Nanomedicine (ETPN). "While specifically designed to meet the needs of pharmaceutical and biotech companies, the new platform will be customizable for other end-user applications such as diagnostics and theranostics."

"Detecting disease earlier and delivering the precise drug dosage at the right place at the right moment are major steps towards improving patient diagnosis and treatment as well as controlling healthcare costs," said Joel Berniac, CEO of Akrivis Technologies. "Akrivis and Leti have highly complementary nanomed technology platforms that will come together and offer physicians powerful new options for diagnosis and treatment."

Supported by AEPI, the Grenoble-Isère economic development agency, Akrivis Technologies and Leti created a joint lab, which was launched on June 2. "Leti's collaboration with Akrivis Technologies underscores Grenoble's strengths as a center for nanomedicine R&D and we are very pleased that they chose Leti and Grenoble for this exciting research and development project," said Joëlle Seux, AEPI director.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo. Visit www.leti.fr for more information.

About Akrivis Technologies, LLC

Akrivis Technologies, LLC is a privately held biopharmaceutical company headquartered in Cambridge, Massachusetts, USA, committed to the early detection, diagnosis and treatment of serious and life-threatening diseases based on its patented Z-TECTTM technology platform. Unlike traditional methods, which are not readily adaptable across multiple assay formats and require special and expensive detection equipment, Akrivis’ Z-TECTTM technology platform amplifies signal at the source. It allows the detection in vitro of unusually low levels of proteins and molecular targets. Z-TECTTM is also capable of imaging millimeter-size lesions in animal models and will make clinical cancer detection in vivo possible at much lower levels of growth. Finally the same Z-TECTTM technology platform allows the delivery of high payloads of drug molecules specifically to targeted cells, offering exciting theranostic applications that can simultaneously combine diagnostic imaging with targeted therapy. Visit www.akrivis.com for more information.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38-78-02-26


Akrivis
+1 617-827-2777


PR Agency
+33 6 64-52-81-10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project