Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles aid the microscopic detection of a protein relevant for cancer

Niels de Jonge at the STEM: microscopic detection of a protein relevant for cancer
Niels de Jonge at the STEM: microscopic detection of a protein relevant for cancer

Abstract:
Assemblies of proteins, known as protein complexes, have important functions in cells; protein complexes embedded in the cell membrane, for example, are responsible for the exchange with the extracellular environment. But because they are very small, their composition from subunits can only be determined indirectly or with extreme time-effort. Scientists at the INM - Leibniz Institute for New Materials are currently developing a novel microscopy technology for the direct detection of such individual subunits of protein complexes in the cell membrane of intact cells. The methodology is applied to investigate a protein complex acting as a calcium channel in the cell membrane. The channel plays an important role in prostate cancer.

Nanoparticles aid the microscopic detection of a protein relevant for cancer

Saarbrücken, Germany | Posted on June 18th, 2014

With the new analytical technique, the scientists employ electron microscopy to examine protein complexes in whole cells in their natural aqueous environment. The protein in question, the TRPV6 calcium channel forming protein, is first provided with an "anchor" to which a gold nanoparticle can bind. Each nanoparticle thus shows the position of a protein subunit so that the composition of the channels from a multiple of proteins and their locations become visible as they are in the living cell.

The cells are examined in tiny liquid chambers using the electron microscope. "Liquid specimens cannot be studied with traditional electron microscopy", explains Professor Niels de Jonge, head of the Innovative Electron Microscopy group at the INM. Cells are typically studied in dry state via thin sectioning of solid dried plastic embedded or frozen material, which means that the proteins are no longer in their intact and natural environment. Using tiny liquid chambers the whole cells can now be examined in an aqueous environment. The chambers are made from silicon microchips and have very thin, electron transparent silicon nitride windows.

Research by the electron microscopy experts at the INM is focussing on two aims: "We are keen to perfect our new technology and demonstrate that its application is useful for biological and pharmaceutical research." Researchers at the INM are therefore working closely with scientists from the Clinical and Experimental Pharmacology and Toxicology Department at the Saarland University.

Background:
Liquid STEM is an electron microscopy method developed by Niels de Jonge. STEM stands for Scanning Transmission Electron Microscopy, a microscopy modality in which a sample is raster scanned by an electron beam and electrons transmitted through the sample are detected. Liquid refers to the application of STEM for specimens in liquid.

####

About INM - Leibniz-Institut für Neue Materialien gGmbH
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological applications and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

For more information, please click here

Contacts:
Carola Jung


Prof. Niels de Jonge
INM – Leibniz Institute for New Materials
Head Innovative Electron Microscopy
Phone: +49681-9300-313
niels.dejonge(at)inm-gmbh.de

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project